Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ def get_segmentation_mask(image_url):
|
|
14 |
|
15 |
def process_image(image, categories_to_hide):
|
16 |
# Convert uploaded image to a PIL Image
|
17 |
-
image = Image.open(image.name).convert("
|
18 |
|
19 |
# Save temporarily and get the mask
|
20 |
image.save("temp_image.png")
|
@@ -29,17 +29,23 @@ def process_image(image, categories_to_hide):
|
|
29 |
"Skin (Hands, Feet, Body)": [4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 20, 21] # Hands, Feet, Arms, Legs, Torso
|
30 |
}
|
31 |
|
32 |
-
#
|
33 |
-
image_array = np.array(image)
|
34 |
-
masked_image = image_array.copy()
|
35 |
|
36 |
-
#
|
|
|
|
|
|
|
|
|
37 |
for category in categories_to_hide:
|
38 |
for idx in grouped_mapping.get(category, []):
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
# Convert back to PIL Image
|
42 |
-
result_image = Image.fromarray(
|
43 |
|
44 |
return result_image
|
45 |
|
@@ -50,11 +56,11 @@ demo = gr.Interface(
|
|
50 |
gr.File(label="Upload an Image"),
|
51 |
gr.CheckboxGroup([
|
52 |
"Background", "Clothes", "Face", "Hair", "Skin (Hands, Feet, Body)"
|
53 |
-
], label="Select Categories to
|
54 |
],
|
55 |
-
outputs=gr.Image(label="Masked Image"),
|
56 |
title="Segmentation Mask Editor",
|
57 |
-
description="Upload an image, generate a segmentation mask, and select categories to
|
58 |
)
|
59 |
|
60 |
if __name__ == "__main__":
|
|
|
14 |
|
15 |
def process_image(image, categories_to_hide):
|
16 |
# Convert uploaded image to a PIL Image
|
17 |
+
image = Image.open(image.name).convert("RGBA")
|
18 |
|
19 |
# Save temporarily and get the mask
|
20 |
image.save("temp_image.png")
|
|
|
29 |
"Skin (Hands, Feet, Body)": [4, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 20, 21] # Hands, Feet, Arms, Legs, Torso
|
30 |
}
|
31 |
|
32 |
+
# Convert image to numpy array (RGBA)
|
33 |
+
image_array = np.array(image, dtype=np.uint8)
|
|
|
34 |
|
35 |
+
# Create an empty transparent image
|
36 |
+
transparent_image = np.zeros_like(image_array, dtype=np.uint8)
|
37 |
+
|
38 |
+
# Preserve only the selected mask regions, make everything else transparent
|
39 |
+
mask_combined = np.zeros_like(mask_data, dtype=bool)
|
40 |
for category in categories_to_hide:
|
41 |
for idx in grouped_mapping.get(category, []):
|
42 |
+
mask_combined |= (mask_data == idx)
|
43 |
+
|
44 |
+
# Apply the mask (preserve only selected regions)
|
45 |
+
transparent_image[mask_combined] = image_array[mask_combined]
|
46 |
|
47 |
# Convert back to PIL Image
|
48 |
+
result_image = Image.fromarray(transparent_image, mode="RGBA")
|
49 |
|
50 |
return result_image
|
51 |
|
|
|
56 |
gr.File(label="Upload an Image"),
|
57 |
gr.CheckboxGroup([
|
58 |
"Background", "Clothes", "Face", "Hair", "Skin (Hands, Feet, Body)"
|
59 |
+
], label="Select Categories to Preserve")
|
60 |
],
|
61 |
+
outputs=gr.Image(label="Masked Image", type="pil"),
|
62 |
title="Segmentation Mask Editor",
|
63 |
+
description="Upload an image, generate a segmentation mask, and select categories to preserve while making the rest transparent."
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|