Spaces:
Running
Running
Update SegCloth.py
Browse files- SegCloth.py +21 -11
SegCloth.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
from transformers import pipeline
|
2 |
-
from PIL import Image
|
3 |
import numpy as np
|
4 |
-
|
5 |
|
6 |
# Initialize segmentation pipeline
|
7 |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
8 |
|
9 |
-
|
10 |
def segment_clothing(img, clothes= ["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
|
11 |
# Segment image
|
12 |
segments = segmenter(img)
|
@@ -15,19 +14,30 @@ def segment_clothing(img, clothes= ["Hat", "Upper-clothes", "Skirt", "Pants", "D
|
|
15 |
mask_list = []
|
16 |
for s in segments:
|
17 |
if(s['label'] in clothes):
|
18 |
-
mask_list.append(s['mask'])
|
19 |
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
final_mask = np.array(mask_list[0])
|
23 |
for mask in mask_list:
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Convert final mask from np array to PIL image
|
28 |
final_mask = Image.fromarray(final_mask)
|
29 |
|
30 |
-
# Apply mask to original image
|
|
|
31 |
img.putalpha(final_mask)
|
32 |
|
33 |
-
return img
|
|
|
1 |
from transformers import pipeline
|
2 |
+
from PIL import Image, ImageFilter
|
3 |
import numpy as np
|
4 |
+
import cv2 # OpenCV for better mask processing
|
5 |
|
6 |
# Initialize segmentation pipeline
|
7 |
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
|
8 |
|
|
|
9 |
def segment_clothing(img, clothes= ["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
|
10 |
# Segment image
|
11 |
segments = segmenter(img)
|
|
|
14 |
mask_list = []
|
15 |
for s in segments:
|
16 |
if(s['label'] in clothes):
|
17 |
+
mask_list.append(np.array(s['mask'], dtype=np.uint8)) # Convert to numpy array and ensure it's uint8
|
18 |
|
19 |
+
# Initialize final mask with zeros
|
20 |
+
final_mask = np.zeros_like(mask_list[0], dtype=np.uint8)
|
21 |
|
22 |
+
# Combine masks into one
|
|
|
23 |
for mask in mask_list:
|
24 |
+
final_mask = np.maximum(final_mask, mask)
|
25 |
+
|
26 |
+
# Optional: Smooth the mask to reduce rough edges (using Gaussian blur)
|
27 |
+
final_mask = cv2.GaussianBlur(final_mask, (7, 7), 0)
|
28 |
+
|
29 |
+
# Optional: Dilate the mask to ensure coverage at edges
|
30 |
+
kernel = np.ones((5,5), np.uint8)
|
31 |
+
final_mask = cv2.dilate(final_mask, kernel, iterations=1)
|
32 |
+
|
33 |
+
# Convert mask to binary (0 or 255) if needed for alpha channel
|
34 |
+
_, final_mask = cv2.threshold(final_mask, 127, 255, cv2.THRESH_BINARY)
|
35 |
+
|
36 |
# Convert final mask from np array to PIL image
|
37 |
final_mask = Image.fromarray(final_mask)
|
38 |
|
39 |
+
# Apply mask to original image (convert to RGBA first)
|
40 |
+
img = img.convert("RGBA")
|
41 |
img.putalpha(final_mask)
|
42 |
|
43 |
+
return img
|