Spaces:
Running
Running
| from transformers import pipeline | |
| from PIL import Image | |
| import numpy as np | |
| import cv2 # OpenCV for better mask processing | |
| # Initialize segmentation pipeline | |
| segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes") | |
| def segment_clothing(img, clothes): | |
| # Segment image | |
| segments = segmenter(img) | |
| # Define clothing items to expand | |
| EXPAND_CLOTHING = {"Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe"} | |
| # Create list of masks | |
| mask_list = [] | |
| expand_mask_list = [] # Separate list for clothes that need expansion | |
| for s in segments: | |
| mask = np.array(s['mask'], dtype=np.uint8) # Convert mask to numpy array | |
| if s['label'] in clothes: | |
| if s['label'] in EXPAND_CLOTHING: | |
| expand_mask_list.append(mask) # Store separately for expansion | |
| else: | |
| mask_list.append(mask) # Keep others as they are | |
| if not mask_list and not expand_mask_list: | |
| return img # Return original image if no relevant items found | |
| # Initialize final mask with zeros | |
| final_mask = np.zeros_like(mask_list[0] if mask_list else expand_mask_list[0], dtype=np.uint8) | |
| # Combine normal masks into one | |
| for mask in mask_list: | |
| final_mask = np.maximum(final_mask, mask) | |
| # Expand selected clothing masks using closing + dilation | |
| for mask in expand_mask_list: | |
| height, width = mask.shape | |
| kernel_size = max(20, int(0.02 * min(height, width))) # 5% expansion | |
| print(kernel_size) | |
| print(height) | |
| print(width) | |
| kernel = np.ones((kernel_size, kernel_size), np.uint8) | |
| # **Step 1: Fill gaps using Closing (Dilation + Erosion)** | |
| closed_mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1) | |
| # **Step 2: Expand using Dilation** | |
| dilated_mask = cv2.dilate(closed_mask, kernel, iterations=1) | |
| # Merge into final mask | |
| final_mask = np.maximum(final_mask, dilated_mask) | |
| # Optional: Use contour filling to ensure all areas within contours are filled | |
| contours, _ = cv2.findContours(final_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| cv2.drawContours(final_mask, contours, -1, (255), thickness=cv2.FILLED) | |
| # Convert mask to binary (0 or 255) if needed for alpha channel | |
| _, final_mask = cv2.threshold(final_mask, 127, 255, cv2.THRESH_BINARY) | |
| # Convert final mask from numpy array to PIL image | |
| final_mask = Image.fromarray(final_mask) | |
| # Apply mask to original image (convert to RGBA first) | |
| img = img.convert("RGBA") | |
| img.putalpha(final_mask) | |
| return img | |