Clothing-Crop / SegCloth.py
devendergarg14's picture
Update SegCloth.py
73cc779 verified
from transformers import pipeline
from PIL import Image
import numpy as np
import cv2 # OpenCV for better mask processing
# Initialize segmentation pipeline
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
def segment_clothing(img, clothes):
# Segment image
segments = segmenter(img)
# Define clothing items to expand
EXPAND_CLOTHING = {"Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe"}
# Create list of masks
mask_list = []
expand_mask_list = [] # Separate list for clothes that need expansion
for s in segments:
mask = np.array(s['mask'], dtype=np.uint8) # Convert mask to numpy array
if s['label'] in clothes:
if s['label'] in EXPAND_CLOTHING:
expand_mask_list.append(mask) # Store separately for expansion
else:
mask_list.append(mask) # Keep others as they are
if not mask_list and not expand_mask_list:
return img # Return original image if no relevant items found
# Initialize final mask with zeros
final_mask = np.zeros_like(mask_list[0] if mask_list else expand_mask_list[0], dtype=np.uint8)
# Combine normal masks into one
for mask in mask_list:
final_mask = np.maximum(final_mask, mask)
# Expand selected clothing masks using closing + dilation
for mask in expand_mask_list:
height, width = mask.shape
kernel_size = max(20, int(0.02 * min(height, width))) # 5% expansion
print(kernel_size)
print(height)
print(width)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# **Step 1: Fill gaps using Closing (Dilation + Erosion)**
closed_mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1)
# **Step 2: Expand using Dilation**
dilated_mask = cv2.dilate(closed_mask, kernel, iterations=1)
# Merge into final mask
final_mask = np.maximum(final_mask, dilated_mask)
# Optional: Use contour filling to ensure all areas within contours are filled
contours, _ = cv2.findContours(final_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(final_mask, contours, -1, (255), thickness=cv2.FILLED)
# Convert mask to binary (0 or 255) if needed for alpha channel
_, final_mask = cv2.threshold(final_mask, 127, 255, cv2.THRESH_BINARY)
# Convert final mask from numpy array to PIL image
final_mask = Image.fromarray(final_mask)
# Apply mask to original image (convert to RGBA first)
img = img.convert("RGBA")
img.putalpha(final_mask)
return img