Commit
·
107a3f2
1
Parent(s):
d435e17
Revert "API solved v2"
Browse filesThis reverts commit 56fb484b2a4d4edf150659764c8a3c1f6022bf8e.
app.py
CHANGED
|
@@ -14,81 +14,6 @@ import plotly.graph_objects as go
|
|
| 14 |
from plotly.subplots import make_subplots
|
| 15 |
from shared import initialize_llm, setup_database_connection, create_agent
|
| 16 |
|
| 17 |
-
try:
|
| 18 |
-
from langchain_core.messages import HumanMessage, AIMessage
|
| 19 |
-
LANGCHAIN_AVAILABLE = True
|
| 20 |
-
except ImportError:
|
| 21 |
-
# Fallback if langchain not available
|
| 22 |
-
class HumanMessage:
|
| 23 |
-
def __init__(self, content):
|
| 24 |
-
self.content = content
|
| 25 |
-
|
| 26 |
-
class AIMessage:
|
| 27 |
-
def __init__(self, content):
|
| 28 |
-
self.content = content
|
| 29 |
-
LANGCHAIN_AVAILABLE = False
|
| 30 |
-
|
| 31 |
-
# Configure logging
|
| 32 |
-
logging.basicConfig(level=logging.INFO)
|
| 33 |
-
logger = logging.getLogger(__name__)
|
| 34 |
-
|
| 35 |
-
def create_ui():
|
| 36 |
-
"""Create the Gradio UI components."""
|
| 37 |
-
# Custom CSS for styling
|
| 38 |
-
custom_css = """
|
| 39 |
-
.gradio-container {
|
| 40 |
-
max-width: 1200px !important;
|
| 41 |
-
}
|
| 42 |
-
.chat-container {
|
| 43 |
-
height: 600px;
|
| 44 |
-
overflow-y: auto;
|
| 45 |
-
}
|
| 46 |
-
.chart-container {
|
| 47 |
-
height: 600px;
|
| 48 |
-
overflow-y: auto;
|
| 49 |
-
}
|
| 50 |
-
"""
|
| 51 |
-
|
| 52 |
-
with gr.Blocks(css=custom_css, title="🤖 SQL Database Assistant") as demo:
|
| 53 |
-
gr.Markdown("# 🤖 SQL Database Assistant")
|
| 54 |
-
gr.Markdown("Ask questions about your database in natural language!")
|
| 55 |
-
|
| 56 |
-
with gr.Row():
|
| 57 |
-
with gr.Column(scale=2):
|
| 58 |
-
chatbot = gr.Chatbot(
|
| 59 |
-
label="Chat",
|
| 60 |
-
elem_classes="chat-container",
|
| 61 |
-
type="messages",
|
| 62 |
-
height=500
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
with gr.Row():
|
| 66 |
-
question_input = gr.Textbox(
|
| 67 |
-
label="Ask your question",
|
| 68 |
-
placeholder="Type your question here...",
|
| 69 |
-
lines=2,
|
| 70 |
-
scale=4
|
| 71 |
-
)
|
| 72 |
-
submit_button = gr.Button("Send", variant="primary", scale=1)
|
| 73 |
-
|
| 74 |
-
streaming_output_display = gr.Markdown(visible=False)
|
| 75 |
-
|
| 76 |
-
with gr.Column(scale=1):
|
| 77 |
-
chart_display = gr.Plot(
|
| 78 |
-
label="Charts",
|
| 79 |
-
elem_classes="chart-container",
|
| 80 |
-
height=500
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
# Status indicators
|
| 84 |
-
with gr.Row():
|
| 85 |
-
status_indicator = gr.Markdown(
|
| 86 |
-
"### ✅ System Status\n- **Database**: Ready\n- **AI Model**: Ready\n- **API**: Available",
|
| 87 |
-
elem_id="status"
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
return demo, chatbot, chart_display, question_input, submit_button, streaming_output_display
|
| 91 |
-
|
| 92 |
# ... (resto del código existente sin cambios) ...
|
| 93 |
|
| 94 |
def create_application():
|
|
@@ -196,112 +121,6 @@ def create_application():
|
|
| 196 |
|
| 197 |
return demo
|
| 198 |
|
| 199 |
-
async def stream_agent_response(question: str, chat_history: List[List[str]]) -> Tuple[str, Optional[go.Figure]]:
|
| 200 |
-
"""Process a question through the SQL agent and return response with optional chart."""
|
| 201 |
-
|
| 202 |
-
# Initialize components
|
| 203 |
-
llm, llm_error = initialize_llm()
|
| 204 |
-
if llm_error:
|
| 205 |
-
return f"**LLM Error:** {llm_error}", None
|
| 206 |
-
|
| 207 |
-
db_connection, db_error = setup_database_connection()
|
| 208 |
-
if db_error:
|
| 209 |
-
return f"**Database Error:** {db_error}", None
|
| 210 |
-
|
| 211 |
-
agent, agent_error = create_agent(llm, db_connection)
|
| 212 |
-
if agent_error:
|
| 213 |
-
return f"**Agent Error:** {agent_error}", None
|
| 214 |
-
|
| 215 |
-
try:
|
| 216 |
-
logger.info(f"Processing question: {question}")
|
| 217 |
-
|
| 218 |
-
# Prepare the input with chat history
|
| 219 |
-
input_data = {"input": question}
|
| 220 |
-
if chat_history:
|
| 221 |
-
# Format chat history for the agent
|
| 222 |
-
formatted_history = []
|
| 223 |
-
for human, ai in chat_history:
|
| 224 |
-
formatted_history.extend([
|
| 225 |
-
HumanMessage(content=human),
|
| 226 |
-
AIMessage(content=ai)
|
| 227 |
-
])
|
| 228 |
-
input_data["chat_history"] = formatted_history
|
| 229 |
-
|
| 230 |
-
# Execute the agent
|
| 231 |
-
response = agent.invoke(input_data)
|
| 232 |
-
|
| 233 |
-
# Extract the response text
|
| 234 |
-
if hasattr(response, 'output') and response.output:
|
| 235 |
-
response_text = response.output
|
| 236 |
-
elif isinstance(response, dict) and 'output' in response:
|
| 237 |
-
response_text = response['output']
|
| 238 |
-
elif isinstance(response, str):
|
| 239 |
-
response_text = response
|
| 240 |
-
else:
|
| 241 |
-
response_text = str(response)
|
| 242 |
-
|
| 243 |
-
# Check for SQL queries in the response
|
| 244 |
-
sql_pattern = r'```sql\s*(.*?)\s*```'
|
| 245 |
-
sql_matches = re.findall(sql_pattern, response_text, re.DOTALL)
|
| 246 |
-
|
| 247 |
-
chart_fig = None
|
| 248 |
-
if sql_matches:
|
| 249 |
-
# Try to execute the SQL and create a chart
|
| 250 |
-
try:
|
| 251 |
-
sql_query = sql_matches[-1].strip()
|
| 252 |
-
logger.info(f"Executing SQL query: {sql_query}")
|
| 253 |
-
|
| 254 |
-
# Execute the query
|
| 255 |
-
result = db_connection.run(sql_query)
|
| 256 |
-
|
| 257 |
-
if result:
|
| 258 |
-
# Convert result to DataFrame
|
| 259 |
-
import pandas as pd
|
| 260 |
-
if isinstance(result, list) and result:
|
| 261 |
-
df = pd.DataFrame(result)
|
| 262 |
-
|
| 263 |
-
# Determine chart type based on data
|
| 264 |
-
if len(df.columns) >= 2:
|
| 265 |
-
# Simple bar chart for categorical data
|
| 266 |
-
fig = go.Figure()
|
| 267 |
-
|
| 268 |
-
if len(df) <= 20: # Bar chart for smaller datasets
|
| 269 |
-
fig.add_trace(go.Bar(
|
| 270 |
-
x=df.iloc[:, 0],
|
| 271 |
-
y=df.iloc[:, 1],
|
| 272 |
-
name=str(df.columns[1])
|
| 273 |
-
))
|
| 274 |
-
fig.update_layout(
|
| 275 |
-
title=f"{df.columns[0]} vs {df.columns[1]}",
|
| 276 |
-
xaxis_title=str(df.columns[0]),
|
| 277 |
-
yaxis_title=str(df.columns[1])
|
| 278 |
-
)
|
| 279 |
-
else: # Line chart for larger datasets
|
| 280 |
-
fig.add_trace(go.Scatter(
|
| 281 |
-
x=df.iloc[:, 0],
|
| 282 |
-
y=df.iloc[:, 1],
|
| 283 |
-
mode='lines+markers',
|
| 284 |
-
name=str(df.columns[1])
|
| 285 |
-
))
|
| 286 |
-
fig.update_layout(
|
| 287 |
-
title=f"{df.columns[0]} vs {df.columns[1]}",
|
| 288 |
-
xaxis_title=str(df.columns[0]),
|
| 289 |
-
yaxis_title=str(df.columns[1])
|
| 290 |
-
)
|
| 291 |
-
|
| 292 |
-
chart_fig = fig
|
| 293 |
-
|
| 294 |
-
except Exception as e:
|
| 295 |
-
logger.warning(f"Could not create chart: {e}")
|
| 296 |
-
# Continue without chart
|
| 297 |
-
|
| 298 |
-
return response_text, chart_fig
|
| 299 |
-
|
| 300 |
-
except Exception as e:
|
| 301 |
-
error_msg = f"**Error processing question:** {str(e)}"
|
| 302 |
-
logger.error(error_msg, exc_info=True)
|
| 303 |
-
return error_msg, None
|
| 304 |
-
|
| 305 |
# Create the application
|
| 306 |
demo = create_application()
|
| 307 |
|
|
|
|
| 14 |
from plotly.subplots import make_subplots
|
| 15 |
from shared import initialize_llm, setup_database_connection, create_agent
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# ... (resto del código existente sin cambios) ...
|
| 18 |
|
| 19 |
def create_application():
|
|
|
|
| 121 |
|
| 122 |
return demo
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
# Create the application
|
| 125 |
demo = create_application()
|
| 126 |
|