Commit
·
0f16c64
1
Parent(s):
683b6ad
API solved
Browse files
README.md
CHANGED
|
@@ -19,11 +19,104 @@ A powerful chatbot that can answer questions by querying your SQL database using
|
|
| 19 |
- Interactive chat interface
|
| 20 |
- Direct database connectivity
|
| 21 |
- Powered by Google's Gemini AI
|
|
|
|
| 22 |
|
| 23 |
## Setup
|
| 24 |
|
| 25 |
-
1. Set up your environment variables in `.env` file
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
Check out the [configuration reference](https://huggingface.co/docs/hub/spaces-config-reference) for more options.
|
|
|
|
| 19 |
- Interactive chat interface
|
| 20 |
- Direct database connectivity
|
| 21 |
- Powered by Google's Gemini AI
|
| 22 |
+
- RESTful API endpoints for integration
|
| 23 |
|
| 24 |
## Setup
|
| 25 |
|
| 26 |
+
1. Set up your environment variables in `.env` file:
|
| 27 |
+
```env
|
| 28 |
+
DB_USER=tu_usuario
|
| 29 |
+
DB_PASSWORD=tu_contraseña
|
| 30 |
+
DB_HOST=tu_servidor
|
| 31 |
+
DB_NAME=tu_base_de_datos
|
| 32 |
+
GOOGLE_API_KEY=tu_api_key_de_google
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
2. Install dependencies:
|
| 36 |
+
```bash
|
| 37 |
+
pip install -r requirements.txt
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
3. Run the web interface:
|
| 41 |
+
```bash
|
| 42 |
+
python app.py
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
4. Run the API server:
|
| 46 |
+
```bash
|
| 47 |
+
python api.py
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## API Usage
|
| 51 |
+
|
| 52 |
+
La API proporciona dos endpoints principales:
|
| 53 |
+
|
| 54 |
+
### 1. Enviar Mensaje de Usuario
|
| 55 |
+
|
| 56 |
+
**Endpoint:** `/user_message`
|
| 57 |
+
|
| 58 |
+
**Método:** POST
|
| 59 |
+
|
| 60 |
+
**Headers:**
|
| 61 |
+
```
|
| 62 |
+
Content-Type: application/json
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
**Body:**
|
| 66 |
+
```json
|
| 67 |
+
{
|
| 68 |
+
"message": "tu pregunta aquí"
|
| 69 |
+
}
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
**Respuesta exitosa:**
|
| 73 |
+
```json
|
| 74 |
+
{
|
| 75 |
+
"message_id": "uuid-generado",
|
| 76 |
+
"status": "success"
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### 2. Obtener Respuesta
|
| 81 |
+
|
| 82 |
+
**Endpoint:** `/ask`
|
| 83 |
+
|
| 84 |
+
**Método:** POST
|
| 85 |
+
|
| 86 |
+
**Headers:**
|
| 87 |
+
```
|
| 88 |
+
Content-Type: application/json
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
**Body:**
|
| 92 |
+
```json
|
| 93 |
+
{
|
| 94 |
+
"message_id": "uuid-del-mensaje"
|
| 95 |
+
}
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
**Respuesta exitosa:**
|
| 99 |
+
```json
|
| 100 |
+
{
|
| 101 |
+
"response": "respuesta del chatbot",
|
| 102 |
+
"status": "success"
|
| 103 |
+
}
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
## Ejemplo de uso de la API
|
| 107 |
+
|
| 108 |
+
1. Primero, envía tu pregunta:
|
| 109 |
+
```bash
|
| 110 |
+
curl -X POST http://localhost:5000/user_message \
|
| 111 |
+
-H "Content-Type: application/json" \
|
| 112 |
+
-d '{"message": "¿Cuántos usuarios hay en la base de datos?"}'
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
2. Luego, usa el message_id recibido para obtener la respuesta:
|
| 116 |
+
```bash
|
| 117 |
+
curl -X POST http://localhost:5000/ask \
|
| 118 |
+
-H "Content-Type: application/json" \
|
| 119 |
+
-d '{"message_id": "uuid-recibido"}'
|
| 120 |
+
```
|
| 121 |
|
| 122 |
Check out the [configuration reference](https://huggingface.co/docs/hub/spaces-config-reference) for more options.
|
api.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from typing import Dict, Optional
|
| 3 |
+
import uuid
|
| 4 |
+
import os
|
| 5 |
+
from app import initialize_llm, setup_database_connection, create_agent, gr
|
| 6 |
+
|
| 7 |
+
app = Flask(__name__)
|
| 8 |
+
|
| 9 |
+
# Almacenamiento en memoria de los mensajes
|
| 10 |
+
message_store: Dict[str, str] = {}
|
| 11 |
+
|
| 12 |
+
@app.route('/user_message', methods=['POST'])
|
| 13 |
+
def handle_user_message():
|
| 14 |
+
try:
|
| 15 |
+
data = request.get_json()
|
| 16 |
+
if not data or 'message' not in data:
|
| 17 |
+
return jsonify({'error': 'Se requiere el campo message'}), 400
|
| 18 |
+
|
| 19 |
+
user_message = data['message']
|
| 20 |
+
|
| 21 |
+
# Generar un ID único para este mensaje
|
| 22 |
+
message_id = str(uuid.uuid4())
|
| 23 |
+
|
| 24 |
+
# Almacenar el mensaje
|
| 25 |
+
message_store[message_id] = user_message
|
| 26 |
+
|
| 27 |
+
return jsonify({
|
| 28 |
+
'message_id': message_id,
|
| 29 |
+
'status': 'success'
|
| 30 |
+
})
|
| 31 |
+
|
| 32 |
+
except Exception as e:
|
| 33 |
+
return jsonify({'error': str(e)}), 500
|
| 34 |
+
|
| 35 |
+
@app.route('/ask', methods=['POST'])
|
| 36 |
+
def handle_ask():
|
| 37 |
+
try:
|
| 38 |
+
data = request.get_json()
|
| 39 |
+
if not data or 'message_id' not in data:
|
| 40 |
+
return jsonify({'error': 'Se requiere el campo message_id'}), 400
|
| 41 |
+
|
| 42 |
+
message_id = data['message_id']
|
| 43 |
+
|
| 44 |
+
# Recuperar el mensaje almacenado
|
| 45 |
+
if message_id not in message_store:
|
| 46 |
+
return jsonify({'error': 'ID de mensaje no encontrado'}), 404
|
| 47 |
+
|
| 48 |
+
user_message = message_store[message_id]
|
| 49 |
+
|
| 50 |
+
# Inicializar componentes necesarios
|
| 51 |
+
llm, llm_error = initialize_llm()
|
| 52 |
+
if llm_error:
|
| 53 |
+
return jsonify({'error': f'Error al inicializar LLM: {llm_error}'}), 500
|
| 54 |
+
|
| 55 |
+
db_connection, db_error = setup_database_connection()
|
| 56 |
+
if db_error:
|
| 57 |
+
return jsonify({'error': f'Error de conexión a la base de datos: {db_error}'}), 500
|
| 58 |
+
|
| 59 |
+
agent, agent_error = create_agent(llm, db_connection)
|
| 60 |
+
if agent_error:
|
| 61 |
+
return jsonify({'error': f'Error al crear el agente: {agent_error}'}), 500
|
| 62 |
+
|
| 63 |
+
# Obtener respuesta del agente
|
| 64 |
+
response = agent.invoke({"input": user_message})
|
| 65 |
+
|
| 66 |
+
# Procesar la respuesta
|
| 67 |
+
if hasattr(response, 'output') and response.output:
|
| 68 |
+
response_text = response.output
|
| 69 |
+
elif isinstance(response, str):
|
| 70 |
+
response_text = response
|
| 71 |
+
elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
|
| 72 |
+
response_text = response['output']
|
| 73 |
+
else:
|
| 74 |
+
response_text = str(response)
|
| 75 |
+
|
| 76 |
+
# Eliminar el mensaje almacenado después de procesarlo
|
| 77 |
+
del message_store[message_id]
|
| 78 |
+
|
| 79 |
+
return jsonify({
|
| 80 |
+
'response': response_text,
|
| 81 |
+
'status': 'success'
|
| 82 |
+
})
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return jsonify({'error': str(e)}), 500
|
| 86 |
+
|
| 87 |
+
# Integración con Gradio para Hugging Face Spaces
|
| 88 |
+
def mount_in_app(gradio_app):
|
| 89 |
+
"""Monta la API Flask en la aplicación Gradio."""
|
| 90 |
+
return gradio_app
|
| 91 |
+
|
| 92 |
+
if __name__ == '__main__':
|
| 93 |
+
# Si se ejecuta directamente, inicia el servidor Flask
|
| 94 |
+
port = int(os.environ.get('PORT', 5000))
|
| 95 |
+
app.run(host='0.0.0.0', port=port)
|
| 96 |
+
else:
|
| 97 |
+
# Si se importa como módulo (en Hugging Face Spaces),
|
| 98 |
+
# expone la función para montar en Gradio
|
| 99 |
+
gradio_app = gr.mount_gradio_app(
|
| 100 |
+
app,
|
| 101 |
+
"/api", # Prefijo para los endpoints de la API
|
| 102 |
+
lambda: True # Autenticación deshabilitada
|
| 103 |
+
)
|
app.py
CHANGED
|
@@ -12,976 +12,23 @@ import pandas as pd
|
|
| 12 |
import plotly.express as px
|
| 13 |
import plotly.graph_objects as go
|
| 14 |
from plotly.subplots import make_subplots
|
| 15 |
-
|
| 16 |
-
from sqlalchemy import text as sa_text
|
| 17 |
-
except Exception:
|
| 18 |
-
sa_text = None
|
| 19 |
|
| 20 |
-
|
| 21 |
-
# Intentar importar dependencias opcionales
|
| 22 |
-
from langchain_community.agent_toolkits import create_sql_agent
|
| 23 |
-
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
|
| 24 |
-
from langchain_community.utilities import SQLDatabase
|
| 25 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 26 |
-
from langchain.agents.agent_types import AgentType
|
| 27 |
-
from langchain.memory import ConversationBufferWindowMemory
|
| 28 |
-
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
| 29 |
-
import pymysql
|
| 30 |
-
from dotenv import load_dotenv
|
| 31 |
-
|
| 32 |
-
DEPENDENCIES_AVAILABLE = True
|
| 33 |
-
except ImportError as e:
|
| 34 |
-
logger.warning(f"Some dependencies are not available: {e}")
|
| 35 |
-
DEPENDENCIES_AVAILABLE = False
|
| 36 |
-
|
| 37 |
-
# Configuración de logging
|
| 38 |
-
logging.basicConfig(level=logging.INFO)
|
| 39 |
-
logger = logging.getLogger(__name__)
|
| 40 |
-
|
| 41 |
-
# Configure logging
|
| 42 |
-
logging.basicConfig(level=logging.INFO)
|
| 43 |
-
|
| 44 |
-
def generate_chart(data: Union[Dict, List[Dict], pd.DataFrame],
|
| 45 |
-
chart_type: str,
|
| 46 |
-
x: str,
|
| 47 |
-
y: str = None,
|
| 48 |
-
title: str = "",
|
| 49 |
-
x_label: str = None,
|
| 50 |
-
y_label: str = None):
|
| 51 |
-
"""
|
| 52 |
-
Generate an interactive Plotly figure from data.
|
| 53 |
-
|
| 54 |
-
Args:
|
| 55 |
-
data: The data to plot (can be a list of dicts or a pandas DataFrame)
|
| 56 |
-
chart_type: Type of chart to generate (bar, line, pie, scatter, histogram)
|
| 57 |
-
x: Column name for x-axis (names for pie)
|
| 58 |
-
y: Column name for y-axis (values for pie)
|
| 59 |
-
title: Chart title
|
| 60 |
-
x_label: Label for x-axis
|
| 61 |
-
y_label: Label for y-axis
|
| 62 |
-
|
| 63 |
-
Returns:
|
| 64 |
-
A Plotly Figure object (interactive) or None on error
|
| 65 |
-
"""
|
| 66 |
-
try:
|
| 67 |
-
# Convert data to DataFrame if it's a list of dicts
|
| 68 |
-
if isinstance(data, list):
|
| 69 |
-
df = pd.DataFrame(data)
|
| 70 |
-
elif isinstance(data, dict):
|
| 71 |
-
df = pd.DataFrame([data])
|
| 72 |
-
else:
|
| 73 |
-
df = data
|
| 74 |
-
|
| 75 |
-
if not isinstance(df, pd.DataFrame):
|
| 76 |
-
return None
|
| 77 |
-
|
| 78 |
-
# Generate the appropriate chart type
|
| 79 |
-
fig = None
|
| 80 |
-
if chart_type == 'bar':
|
| 81 |
-
fig = px.bar(df, x=x, y=y, title=title)
|
| 82 |
-
elif chart_type == 'line':
|
| 83 |
-
fig = px.line(df, x=x, y=y, title=title)
|
| 84 |
-
elif chart_type == 'pie':
|
| 85 |
-
fig = px.pie(df, names=x, values=y, title=title, hole=0)
|
| 86 |
-
elif chart_type == 'scatter':
|
| 87 |
-
fig = px.scatter(df, x=x, y=y, title=title)
|
| 88 |
-
elif chart_type == 'histogram':
|
| 89 |
-
fig = px.histogram(df, x=x, title=title)
|
| 90 |
-
else:
|
| 91 |
-
return None
|
| 92 |
-
|
| 93 |
-
# Update layout
|
| 94 |
-
fig.update_layout(
|
| 95 |
-
xaxis_title=x_label or x,
|
| 96 |
-
yaxis_title=y_label or (y if y != x else ''),
|
| 97 |
-
title=title or f"{chart_type.capitalize()} Chart of {x} vs {y}" if y else f"{chart_type.capitalize()} Chart of {x}",
|
| 98 |
-
template="plotly_white",
|
| 99 |
-
margin=dict(l=20, r=20, t=40, b=20),
|
| 100 |
-
height=400
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
return fig
|
| 104 |
-
|
| 105 |
-
except Exception as e:
|
| 106 |
-
error_msg = f"Error generating chart: {str(e)}"
|
| 107 |
-
logger.error(error_msg, exc_info=True)
|
| 108 |
-
return None
|
| 109 |
-
|
| 110 |
-
logger = logging.getLogger(__name__)
|
| 111 |
-
|
| 112 |
-
def check_environment():
|
| 113 |
-
"""Verifica si el entorno está configurado correctamente."""
|
| 114 |
-
if not DEPENDENCIES_AVAILABLE:
|
| 115 |
-
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
|
| 116 |
-
|
| 117 |
-
# Verificar si estamos en un entorno con variables de entorno
|
| 118 |
-
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
|
| 119 |
-
missing_vars = [var for var in required_vars if not os.getenv(var)]
|
| 120 |
-
|
| 121 |
-
if missing_vars:
|
| 122 |
-
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
|
| 123 |
-
|
| 124 |
-
return True, "Environment is properly configured"
|
| 125 |
-
|
| 126 |
-
def setup_database_connection():
|
| 127 |
-
"""Intenta establecer una conexión a la base de datos."""
|
| 128 |
-
if not DEPENDENCIES_AVAILABLE:
|
| 129 |
-
return None, "Dependencies not available"
|
| 130 |
-
|
| 131 |
-
try:
|
| 132 |
-
load_dotenv(override=True)
|
| 133 |
-
|
| 134 |
-
# Debug: Log all environment variables (without sensitive values)
|
| 135 |
-
logger.info("Environment variables:")
|
| 136 |
-
for key, value in os.environ.items():
|
| 137 |
-
if any(s in key.lower() for s in ['pass', 'key', 'secret']):
|
| 138 |
-
logger.info(f" {key}: {'*' * 8} (hidden for security)")
|
| 139 |
-
else:
|
| 140 |
-
logger.info(f" {key}: {value}")
|
| 141 |
-
|
| 142 |
-
db_user = os.getenv("DB_USER")
|
| 143 |
-
db_password = os.getenv("DB_PASSWORD")
|
| 144 |
-
db_host = os.getenv("DB_HOST")
|
| 145 |
-
db_name = os.getenv("DB_NAME")
|
| 146 |
-
|
| 147 |
-
# Debug: Log database connection info (without password)
|
| 148 |
-
logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
|
| 149 |
-
if not all([db_user, db_password, db_host, db_name]):
|
| 150 |
-
missing = [var for var, val in [
|
| 151 |
-
("DB_USER", db_user),
|
| 152 |
-
("DB_PASSWORD", "*" if db_password else ""),
|
| 153 |
-
("DB_HOST", db_host),
|
| 154 |
-
("DB_NAME", db_name)
|
| 155 |
-
] if not val]
|
| 156 |
-
logger.error(f"Missing required database configuration: {', '.join(missing)}")
|
| 157 |
-
return None, f"Missing database configuration: {', '.join(missing)}"
|
| 158 |
-
|
| 159 |
-
if not all([db_user, db_password, db_host, db_name]):
|
| 160 |
-
return None, "Missing database configuration"
|
| 161 |
-
|
| 162 |
-
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
|
| 163 |
-
|
| 164 |
-
# Probar conexión
|
| 165 |
-
connection = pymysql.connect(
|
| 166 |
-
host=db_host,
|
| 167 |
-
user=db_user,
|
| 168 |
-
password=db_password,
|
| 169 |
-
database=db_name,
|
| 170 |
-
connect_timeout=5,
|
| 171 |
-
cursorclass=pymysql.cursors.DictCursor
|
| 172 |
-
)
|
| 173 |
-
connection.close()
|
| 174 |
-
|
| 175 |
-
# Si la conexión es exitosa, crear motor SQLAlchemy
|
| 176 |
-
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
|
| 177 |
-
logger.info("Database connection successful")
|
| 178 |
-
return SQLDatabase.from_uri(db_uri), ""
|
| 179 |
-
|
| 180 |
-
except Exception as e:
|
| 181 |
-
error_msg = f"Error connecting to database: {str(e)}"
|
| 182 |
-
logger.error(error_msg)
|
| 183 |
-
return None, error_msg
|
| 184 |
-
|
| 185 |
-
def initialize_llm():
|
| 186 |
-
"""Inicializa el modelo de lenguaje."""
|
| 187 |
-
if not DEPENDENCIES_AVAILABLE:
|
| 188 |
-
error_msg = "Dependencies not available. Make sure all required packages are installed."
|
| 189 |
-
logger.error(error_msg)
|
| 190 |
-
return None, error_msg
|
| 191 |
-
|
| 192 |
-
google_api_key = os.getenv("GOOGLE_API_KEY")
|
| 193 |
-
logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
|
| 194 |
-
|
| 195 |
-
if not google_api_key:
|
| 196 |
-
error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
|
| 197 |
-
logger.error(error_msg)
|
| 198 |
-
return None, error_msg
|
| 199 |
-
|
| 200 |
-
try:
|
| 201 |
-
logger.info("Initializing Google Generative AI...")
|
| 202 |
-
llm = ChatGoogleGenerativeAI(
|
| 203 |
-
model="gemini-2.0-flash",
|
| 204 |
-
temperature=0,
|
| 205 |
-
google_api_key=google_api_key,
|
| 206 |
-
convert_system_message_to_human=True # Convert system messages to human messages
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
# Test the model with a simple prompt
|
| 210 |
-
test_prompt = "Hello, this is a test."
|
| 211 |
-
logger.info(f"Testing model with prompt: {test_prompt}")
|
| 212 |
-
test_response = llm.invoke(test_prompt)
|
| 213 |
-
logger.info(f"Model test response: {str(test_response)[:100]}...") # Log first 100 chars
|
| 214 |
-
|
| 215 |
-
logger.info("Google Generative AI initialized successfully")
|
| 216 |
-
return llm, ""
|
| 217 |
-
|
| 218 |
-
except Exception as e:
|
| 219 |
-
error_msg = f"Error initializing Google Generative AI: {str(e)}"
|
| 220 |
-
logger.error(error_msg, exc_info=True) # Include full stack trace
|
| 221 |
-
return None, error_msg
|
| 222 |
-
|
| 223 |
-
def create_agent():
|
| 224 |
-
"""Crea el agente SQL si es posible."""
|
| 225 |
-
if not DEPENDENCIES_AVAILABLE:
|
| 226 |
-
error_msg = "Dependencies not available. Please check if all required packages are installed."
|
| 227 |
-
logger.error(error_msg)
|
| 228 |
-
return None, error_msg
|
| 229 |
-
|
| 230 |
-
logger.info("Starting agent creation process...")
|
| 231 |
-
|
| 232 |
-
def create_agent(llm, db_connection):
|
| 233 |
-
"""Create and return a SQL database agent with conversation memory."""
|
| 234 |
-
if not llm:
|
| 235 |
-
error_msg = "Cannot create agent: LLM is not available"
|
| 236 |
-
logger.error(error_msg)
|
| 237 |
-
return None, error_msg
|
| 238 |
-
|
| 239 |
-
if not db_connection:
|
| 240 |
-
error_msg = "Cannot create agent: Database connection is not available"
|
| 241 |
-
logger.error(error_msg)
|
| 242 |
-
return None, error_msg
|
| 243 |
-
|
| 244 |
-
try:
|
| 245 |
-
logger.info("Creating SQL agent with memory...")
|
| 246 |
-
|
| 247 |
-
# Create conversation memory
|
| 248 |
-
memory = ConversationBufferWindowMemory(
|
| 249 |
-
memory_key="chat_history",
|
| 250 |
-
k=5, # Keep last 5 message exchanges in memory
|
| 251 |
-
return_messages=True,
|
| 252 |
-
output_key="output"
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
# Create the database toolkit with additional configuration
|
| 256 |
-
toolkit = SQLDatabaseToolkit(
|
| 257 |
-
db=db_connection,
|
| 258 |
-
llm=llm
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
# Create the agent with memory and more detailed configuration
|
| 262 |
-
agent = create_sql_agent(
|
| 263 |
-
llm=llm,
|
| 264 |
-
toolkit=toolkit,
|
| 265 |
-
agent_type=AgentType.OPENAI_FUNCTIONS,
|
| 266 |
-
verbose=True,
|
| 267 |
-
handle_parsing_errors=True, # Better error handling for parsing
|
| 268 |
-
max_iterations=10, # Limit the number of iterations
|
| 269 |
-
early_stopping_method="generate", # Stop early if the agent is stuck
|
| 270 |
-
memory=memory, # Add memory to the agent
|
| 271 |
-
return_intermediate_steps=True # Important for memory to work properly
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
# Test the agent with a simple query
|
| 275 |
-
logger.info("Testing agent with a simple query...")
|
| 276 |
-
try:
|
| 277 |
-
test_query = "SELECT 1"
|
| 278 |
-
test_result = agent.run(test_query)
|
| 279 |
-
logger.info(f"Agent test query successful: {str(test_result)[:200]}...")
|
| 280 |
-
except Exception as e:
|
| 281 |
-
logger.warning(f"Agent test query failed (this might be expected): {str(e)}")
|
| 282 |
-
# Continue even if test fails, as it might be due to model limitations
|
| 283 |
-
|
| 284 |
-
logger.info("SQL agent created successfully")
|
| 285 |
-
return agent, ""
|
| 286 |
-
|
| 287 |
-
except Exception as e:
|
| 288 |
-
error_msg = f"Error creating SQL agent: {str(e)}"
|
| 289 |
-
logger.error(error_msg, exc_info=True)
|
| 290 |
-
return None, error_msg
|
| 291 |
-
|
| 292 |
-
# Inicializar el agente
|
| 293 |
-
logger.info("="*50)
|
| 294 |
-
logger.info("Starting application initialization...")
|
| 295 |
-
logger.info(f"Python version: {sys.version}")
|
| 296 |
-
logger.info(f"Current working directory: {os.getcwd()}")
|
| 297 |
-
logger.info(f"Files in working directory: {os.listdir()}")
|
| 298 |
-
|
| 299 |
-
# Verificar las variables de entorno
|
| 300 |
-
logger.info("Checking environment variables...")
|
| 301 |
-
for var in ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]:
|
| 302 |
-
logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")
|
| 303 |
-
|
| 304 |
-
# Initialize components
|
| 305 |
-
logger.info("Initializing database connection...")
|
| 306 |
-
db_connection, db_error = setup_database_connection()
|
| 307 |
-
if db_error:
|
| 308 |
-
logger.error(f"Failed to initialize database: {db_error}")
|
| 309 |
-
|
| 310 |
-
logger.info("Initializing language model...")
|
| 311 |
-
llm, llm_error = initialize_llm()
|
| 312 |
-
if llm_error:
|
| 313 |
-
logger.error(f"Failed to initialize language model: {llm_error}")
|
| 314 |
-
|
| 315 |
-
logger.info("Initializing agent...")
|
| 316 |
-
agent, agent_error = create_agent(llm, db_connection)
|
| 317 |
-
db_connected = agent is not None
|
| 318 |
-
|
| 319 |
-
if agent:
|
| 320 |
-
logger.info("Agent initialized successfully")
|
| 321 |
-
else:
|
| 322 |
-
logger.error(f"Failed to initialize agent: {agent_error}")
|
| 323 |
-
|
| 324 |
-
logger.info("="*50)
|
| 325 |
-
|
| 326 |
-
def looks_like_sql(s: str) -> bool:
|
| 327 |
-
"""Heuristic to check if a string looks like an executable SQL statement."""
|
| 328 |
-
if not s:
|
| 329 |
-
return False
|
| 330 |
-
s_strip = s.strip().lstrip("-- ")
|
| 331 |
-
# common starters
|
| 332 |
-
return bool(re.match(r"^(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)\b", s_strip, re.IGNORECASE))
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
def extract_sql_query(text):
|
| 336 |
-
"""Extrae consultas SQL del texto. Acepta solo bloques etiquetados como ```sql
|
| 337 |
-
o cadenas que claramente parezcan SQL. Evita ejecutar texto genérico.
|
| 338 |
-
"""
|
| 339 |
-
if not text:
|
| 340 |
-
return None
|
| 341 |
-
|
| 342 |
-
# Buscar TODOS los bloques en backticks y elegir los que sean 'sql'
|
| 343 |
-
for m in re.finditer(r"```(\w+)?\s*(.*?)```", text, re.DOTALL | re.IGNORECASE):
|
| 344 |
-
lang = (m.group(1) or '').lower()
|
| 345 |
-
body = (m.group(2) or '').strip()
|
| 346 |
-
if lang in {"sql", "postgresql", "mysql"} and looks_like_sql(body):
|
| 347 |
-
return body
|
| 348 |
-
|
| 349 |
-
# Si no hay bloques etiquetados, buscar una consulta SQL simple con palabras clave
|
| 350 |
-
simple = re.search(r"(WITH|SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE)[\s\S]*?;", text, re.IGNORECASE)
|
| 351 |
-
if simple:
|
| 352 |
-
candidate = simple.group(0).strip()
|
| 353 |
-
if looks_like_sql(candidate):
|
| 354 |
-
return candidate
|
| 355 |
-
|
| 356 |
-
return None
|
| 357 |
-
|
| 358 |
-
def execute_sql_query(query, db_connection):
|
| 359 |
-
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
|
| 360 |
-
if not db_connection:
|
| 361 |
-
return "Error: No hay conexión a la base de datos"
|
| 362 |
-
|
| 363 |
-
try:
|
| 364 |
-
with db_connection._engine.connect() as connection:
|
| 365 |
-
# Ensure SQLAlchemy receives a SQL expression
|
| 366 |
-
if sa_text is not None and isinstance(query, str):
|
| 367 |
-
result = connection.execute(sa_text(query))
|
| 368 |
-
else:
|
| 369 |
-
result = connection.execute(query)
|
| 370 |
-
|
| 371 |
-
# Fetch data and column names
|
| 372 |
-
columns = list(result.keys()) if hasattr(result, "keys") else []
|
| 373 |
-
rows = result.fetchall()
|
| 374 |
-
|
| 375 |
-
# Convertir los resultados a un formato legible
|
| 376 |
-
if not rows:
|
| 377 |
-
return "La consulta no devolvió resultados"
|
| 378 |
-
|
| 379 |
-
# Si es un solo resultado, devolverlo directamente
|
| 380 |
-
try:
|
| 381 |
-
if len(rows) == 1 and len(rows[0]) == 1:
|
| 382 |
-
return str(rows[0][0])
|
| 383 |
-
except Exception:
|
| 384 |
-
pass
|
| 385 |
-
|
| 386 |
-
# Si hay múltiples filas, formatear como tabla Markdown
|
| 387 |
-
try:
|
| 388 |
-
import pandas as pd
|
| 389 |
-
|
| 390 |
-
# Convert SQLAlchemy Row objects to list of dicts using column names
|
| 391 |
-
if columns:
|
| 392 |
-
data = [
|
| 393 |
-
{col: val for col, val in zip(columns, tuple(row))}
|
| 394 |
-
for row in rows
|
| 395 |
-
]
|
| 396 |
-
df = pd.DataFrame(data)
|
| 397 |
-
else:
|
| 398 |
-
# Fallback: let pandas infer columns
|
| 399 |
-
df = pd.DataFrame(rows)
|
| 400 |
-
|
| 401 |
-
# Prefer Markdown output for downstream chart parsing
|
| 402 |
-
try:
|
| 403 |
-
return df.to_markdown(index=False)
|
| 404 |
-
except Exception:
|
| 405 |
-
# If optional dependency 'tabulate' is missing, build a simple Markdown table
|
| 406 |
-
headers = list(map(str, df.columns))
|
| 407 |
-
header_line = "| " + " | ".join(headers) + " |"
|
| 408 |
-
sep_line = "| " + " | ".join(["---"] * len(headers)) + " |"
|
| 409 |
-
body_lines = []
|
| 410 |
-
for _, r in df.iterrows():
|
| 411 |
-
body_lines.append("| " + " | ".join(map(lambda v: str(v), r.values)) + " |")
|
| 412 |
-
return "\n".join([header_line, sep_line, *body_lines])
|
| 413 |
-
except ImportError:
|
| 414 |
-
# Si pandas no está disponible, usar formato simple
|
| 415 |
-
return "\n".join([str(row) for row in rows])
|
| 416 |
-
|
| 417 |
-
except Exception as e:
|
| 418 |
-
return f"Error ejecutando la consulta: {str(e)}"
|
| 419 |
-
|
| 420 |
-
def detect_chart_preferences(question: str) -> Tuple[bool, str]:
|
| 421 |
-
"""Detect whether the user is asking for a chart and infer desired type.
|
| 422 |
-
|
| 423 |
-
Returns (wants_chart, chart_type) where chart_type is one of
|
| 424 |
-
{'bar', 'pie', 'line', 'scatter', 'histogram'}.
|
| 425 |
-
Defaults to 'bar' when ambiguous.
|
| 426 |
-
"""
|
| 427 |
-
try:
|
| 428 |
-
q = (question or "").lower()
|
| 429 |
-
|
| 430 |
-
# Broad triggers indicating any chart request
|
| 431 |
-
chart_triggers = [
|
| 432 |
-
"grafico", "gráfico", "grafica", "gráfica", "chart", "graph",
|
| 433 |
-
"visualizacion", "visualización", "plot", "plotly", "diagrama"
|
| 434 |
-
]
|
| 435 |
-
wants_chart = any(k in q for k in chart_triggers)
|
| 436 |
-
|
| 437 |
-
# Specific type hints
|
| 438 |
-
if any(k in q for k in ["pastel", "pie", "circular", "donut", "dona", "anillo"]):
|
| 439 |
-
return wants_chart or True, "pie"
|
| 440 |
-
if any(k in q for k in ["linea", "línea", "line", "tendencia"]):
|
| 441 |
-
return wants_chart or True, "line"
|
| 442 |
-
if any(k in q for k in ["dispersión", "dispersion", "scatter", "puntos"]):
|
| 443 |
-
return wants_chart or True, "scatter"
|
| 444 |
-
if any(k in q for k in ["histograma", "histogram"]):
|
| 445 |
-
return wants_chart or True, "histogram"
|
| 446 |
-
if any(k in q for k in ["barra", "barras", "columnas", "column"]):
|
| 447 |
-
return wants_chart or True, "bar"
|
| 448 |
-
|
| 449 |
-
# Default
|
| 450 |
-
return wants_chart, "bar"
|
| 451 |
-
except Exception:
|
| 452 |
-
return False, "bar"
|
| 453 |
-
|
| 454 |
-
def generate_plot(data, x_col, y_col, title, x_label, y_label):
|
| 455 |
-
"""Generate a plot from data and return the file path."""
|
| 456 |
-
plt.figure(figsize=(10, 6))
|
| 457 |
-
plt.bar(data[x_col], data[y_col])
|
| 458 |
-
plt.title(title)
|
| 459 |
-
plt.xlabel(x_label)
|
| 460 |
-
plt.ylabel(y_label)
|
| 461 |
-
plt.xticks(rotation=45)
|
| 462 |
-
plt.tight_layout()
|
| 463 |
-
|
| 464 |
-
# Save to a temporary file
|
| 465 |
-
temp_dir = tempfile.mkdtemp()
|
| 466 |
-
plot_path = os.path.join(temp_dir, "plot.png")
|
| 467 |
-
plt.savefig(plot_path)
|
| 468 |
-
plt.close()
|
| 469 |
-
|
| 470 |
-
return plot_path
|
| 471 |
-
|
| 472 |
-
def convert_to_messages_format(chat_history):
|
| 473 |
-
"""Convert chat history to the format expected by Gradio 5.x"""
|
| 474 |
-
if not chat_history:
|
| 475 |
-
return []
|
| 476 |
-
|
| 477 |
-
messages = []
|
| 478 |
-
|
| 479 |
-
# If the first element is a list, assume it's in the old format
|
| 480 |
-
if isinstance(chat_history[0], list):
|
| 481 |
-
for msg in chat_history:
|
| 482 |
-
if isinstance(msg, list) and len(msg) == 2:
|
| 483 |
-
# Format: [user_msg, bot_msg]
|
| 484 |
-
user_msg, bot_msg = msg
|
| 485 |
-
if user_msg:
|
| 486 |
-
messages.append({"role": "user", "content": user_msg})
|
| 487 |
-
if bot_msg:
|
| 488 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
| 489 |
-
else:
|
| 490 |
-
# Assume it's already in the correct format or can be used as is
|
| 491 |
-
for msg in chat_history:
|
| 492 |
-
if isinstance(msg, dict) and "role" in msg and "content" in msg:
|
| 493 |
-
messages.append(msg)
|
| 494 |
-
elif isinstance(msg, str):
|
| 495 |
-
# If it's a string, assume it's a user message
|
| 496 |
-
messages.append({"role": "user", "content": msg})
|
| 497 |
-
|
| 498 |
-
return messages
|
| 499 |
-
|
| 500 |
-
async def stream_agent_response(question: str, chat_history: List[List[str]]) -> Tuple[str, Optional["go.Figure"]]:
|
| 501 |
-
"""Procesa la pregunta del usuario y devuelve la respuesta del agente con memoria de conversación."""
|
| 502 |
-
global agent # Make sure we can modify the agent's memory
|
| 503 |
-
|
| 504 |
-
# Initialize response
|
| 505 |
-
response_text = ""
|
| 506 |
-
chart_fig = None
|
| 507 |
-
messages = []
|
| 508 |
-
|
| 509 |
-
# Add previous chat history in the correct format for the agent
|
| 510 |
-
for msg_pair in chat_history:
|
| 511 |
-
if len(msg_pair) >= 1 and msg_pair[0]: # User message
|
| 512 |
-
messages.append(HumanMessage(content=msg_pair[0]))
|
| 513 |
-
if len(msg_pair) >= 2 and msg_pair[1]: # Assistant message
|
| 514 |
-
messages.append(AIMessage(content=msg_pair[1]))
|
| 515 |
-
|
| 516 |
-
# Add current user's question
|
| 517 |
-
user_message = HumanMessage(content=question)
|
| 518 |
-
messages.append(user_message)
|
| 519 |
-
|
| 520 |
-
if not agent:
|
| 521 |
-
error_msg = (
|
| 522 |
-
"## ⚠️ Error: Agente no inicializado\n\n"
|
| 523 |
-
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
|
| 524 |
-
"1. Todas las variables de entorno estén configuradas correctamente\n"
|
| 525 |
-
"2. La base de datos esté accesible\n"
|
| 526 |
-
f"3. El modelo de lenguaje esté disponible\n\n"
|
| 527 |
-
f"Error: {agent_error}"
|
| 528 |
-
)
|
| 529 |
-
return error_msg, None
|
| 530 |
-
|
| 531 |
-
# Update the agent's memory with the full conversation history
|
| 532 |
-
try:
|
| 533 |
-
# Rebuild agent memory from chat history pairs
|
| 534 |
-
if hasattr(agent, 'memory') and agent.memory is not None:
|
| 535 |
-
agent.memory.clear()
|
| 536 |
-
for i in range(0, len(messages)-1, 2): # (user, assistant)
|
| 537 |
-
if i+1 < len(messages):
|
| 538 |
-
agent.memory.save_context(
|
| 539 |
-
{"input": messages[i].content},
|
| 540 |
-
{"output": messages[i+1].content}
|
| 541 |
-
)
|
| 542 |
-
except Exception as e:
|
| 543 |
-
logger.error(f"Error updating agent memory: {str(e)}", exc_info=True)
|
| 544 |
-
|
| 545 |
-
try:
|
| 546 |
-
# Add empty assistant message that will be updated
|
| 547 |
-
assistant_message = {"role": "assistant", "content": ""}
|
| 548 |
-
messages.append(assistant_message)
|
| 549 |
-
|
| 550 |
-
# Execute the agent with proper error handling
|
| 551 |
-
try:
|
| 552 |
-
# Let the agent use its memory; don't pass raw chat_history
|
| 553 |
-
response = await agent.ainvoke({"input": question})
|
| 554 |
-
logger.info(f"Agent response type: {type(response)}")
|
| 555 |
-
logger.info(f"Agent response content: {str(response)[:500]}...")
|
| 556 |
-
|
| 557 |
-
# Handle different response formats
|
| 558 |
-
if hasattr(response, 'output') and response.output:
|
| 559 |
-
response_text = response.output
|
| 560 |
-
elif isinstance(response, str):
|
| 561 |
-
response_text = response
|
| 562 |
-
elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
|
| 563 |
-
response_text = response['output']
|
| 564 |
-
else:
|
| 565 |
-
response_text = str(response)
|
| 566 |
-
|
| 567 |
-
# logger.info(f"Extracted response text: {response_text[:200]}...")
|
| 568 |
-
|
| 569 |
-
# # Check if the response contains an SQL query and it truly looks like SQL
|
| 570 |
-
# sql_query = extract_sql_query(response_text)
|
| 571 |
-
# if sql_query and looks_like_sql(sql_query):
|
| 572 |
-
# logger.info(f"Detected SQL query: {sql_query}")
|
| 573 |
-
# # Execute the query and update the response
|
| 574 |
-
# db_connection, _ = setup_database_connection()
|
| 575 |
-
# if db_connection:
|
| 576 |
-
# query_result = execute_sql_query(sql_query, db_connection)
|
| 577 |
-
|
| 578 |
-
# # Add the query and its result to the response
|
| 579 |
-
# response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
|
| 580 |
-
|
| 581 |
-
# # Try to generate an interactive chart if the result is tabular
|
| 582 |
-
# try:
|
| 583 |
-
# if isinstance(query_result, str) and '|' in query_result and '---' in query_result:
|
| 584 |
-
# # Convert markdown table to DataFrame
|
| 585 |
-
|
| 586 |
-
# # Clean up the markdown table
|
| 587 |
-
# lines = [line.strip() for line in query_result.split('\n')
|
| 588 |
-
# if line.strip() and '---' not in line and '|' in line]
|
| 589 |
-
# if len(lines) > 1: # At least header + 1 data row
|
| 590 |
-
# # Get column names from the first line
|
| 591 |
-
# columns = [col.strip() for col in lines[0].split('|')[1:-1]]
|
| 592 |
-
# # Get data rows
|
| 593 |
-
# data = []
|
| 594 |
-
# for line in lines[1:]:
|
| 595 |
-
# values = [val.strip() for val in line.split('|')[1:-1]]
|
| 596 |
-
# if len(values) == len(columns):
|
| 597 |
-
# data.append(dict(zip(columns, values)))
|
| 598 |
-
|
| 599 |
-
# if data and len(columns) >= 2:
|
| 600 |
-
# # Determine chart type from user's question
|
| 601 |
-
# _, desired_type = detect_chart_preferences(question)
|
| 602 |
-
|
| 603 |
-
# # Choose x/y columns (assume first is category, second numeric)
|
| 604 |
-
# x_col = columns[0]
|
| 605 |
-
# y_col = columns[1]
|
| 606 |
-
|
| 607 |
-
# # Coerce numeric values for y
|
| 608 |
-
# for row in data:
|
| 609 |
-
# try:
|
| 610 |
-
# row[y_col] = float(re.sub(r"[^0-9.\-]", "", str(row[y_col])))
|
| 611 |
-
# except Exception:
|
| 612 |
-
# pass
|
| 613 |
-
|
| 614 |
-
# chart_fig = generate_chart(
|
| 615 |
-
# data=data,
|
| 616 |
-
# chart_type=desired_type,
|
| 617 |
-
# x=x_col,
|
| 618 |
-
# y=y_col,
|
| 619 |
-
# title=f"{y_col} por {x_col}"
|
| 620 |
-
# )
|
| 621 |
-
# if chart_fig is not None:
|
| 622 |
-
# logger.info(f"Chart generated from SQL table: type={desired_type}, x={x_col}, y={y_col}, rows={len(data)}")
|
| 623 |
-
# except Exception as e:
|
| 624 |
-
# logger.error(f"Error generating chart: {str(e)}", exc_info=True)
|
| 625 |
-
# # Don't fail the whole request if chart generation fails
|
| 626 |
-
# response_text += "\n\n⚠️ No se pudo generar la visualización de los datos."
|
| 627 |
-
# else:
|
| 628 |
-
# response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
|
| 629 |
-
# elif sql_query and not looks_like_sql(sql_query):
|
| 630 |
-
# logger.info("Detected code block but it does not look like SQL; skipping execution.")
|
| 631 |
-
|
| 632 |
-
# If we still have no chart but the user clearly wants one,
|
| 633 |
-
# try a second pass to get ONLY a SQL query from the agent and execute it.
|
| 634 |
-
if chart_fig is None:
|
| 635 |
-
wants_chart, default_type = detect_chart_preferences(question)
|
| 636 |
-
if wants_chart:
|
| 637 |
-
try:
|
| 638 |
-
logger.info("Second pass: asking agent for ONLY SQL query in fenced block.")
|
| 639 |
-
sql_only_prompt = (
|
| 640 |
-
"Devuelve SOLO la consulta SQL en un bloque ```sql``` para responder a: "
|
| 641 |
-
f"{question}. No incluyas explicación ni texto adicional."
|
| 642 |
-
)
|
| 643 |
-
sql_only_resp = await agent.ainvoke({"input": sql_only_prompt})
|
| 644 |
-
sql_only_text = str(sql_only_resp)
|
| 645 |
-
sql_query2 = extract_sql_query(sql_only_text)
|
| 646 |
-
if sql_query2 and looks_like_sql(sql_query2):
|
| 647 |
-
logger.info(f"Second pass SQL detected: {sql_query2}")
|
| 648 |
-
db_connection, _ = setup_database_connection()
|
| 649 |
-
if db_connection:
|
| 650 |
-
query_result = execute_sql_query(sql_query2, db_connection)
|
| 651 |
-
# Try to parse table-like text into DataFrame if possible
|
| 652 |
-
data = None
|
| 653 |
-
if isinstance(query_result, str):
|
| 654 |
-
try:
|
| 655 |
-
import pandas as pd
|
| 656 |
-
df = pd.read_csv(io.StringIO(query_result), sep="|")
|
| 657 |
-
data = df
|
| 658 |
-
except Exception:
|
| 659 |
-
pass
|
| 660 |
-
# As a fallback, don't rely on text table; just skip charting here
|
| 661 |
-
if data is not None and hasattr(data, "empty") and not data.empty:
|
| 662 |
-
# Heuristics: choose first column as x and second as y if numeric
|
| 663 |
-
x_col = data.columns[0]
|
| 664 |
-
# pick first numeric column different to x
|
| 665 |
-
y_col = None
|
| 666 |
-
for col in data.columns[1:]:
|
| 667 |
-
try:
|
| 668 |
-
pd.to_numeric(data[col])
|
| 669 |
-
y_col = col
|
| 670 |
-
break
|
| 671 |
-
except Exception:
|
| 672 |
-
continue
|
| 673 |
-
if y_col:
|
| 674 |
-
desired_type = default_type
|
| 675 |
-
chart_fig = generate_chart(
|
| 676 |
-
data=data,
|
| 677 |
-
chart_type=desired_type,
|
| 678 |
-
x=x_col,
|
| 679 |
-
y=y_col,
|
| 680 |
-
title=f"{y_col} por {x_col}"
|
| 681 |
-
)
|
| 682 |
-
if chart_fig is not None:
|
| 683 |
-
logger.info("Chart generated from second-pass SQL execution.")
|
| 684 |
-
else:
|
| 685 |
-
logger.info("No DB connection on second pass; skipping.")
|
| 686 |
-
except Exception as e:
|
| 687 |
-
logger.error(f"Second-pass SQL synthesis failed: {e}")
|
| 688 |
-
|
| 689 |
-
# Fallback: if user asked for a chart and we didn't get SQL or chart yet,
|
| 690 |
-
# parse the most recent assistant text for lines like "LABEL: NUMBER" (bulleted or plain).
|
| 691 |
-
if chart_fig is None:
|
| 692 |
-
wants_chart, desired_type = detect_chart_preferences(question)
|
| 693 |
-
if wants_chart:
|
| 694 |
-
# Find the most recent assistant message with usable numeric pairs
|
| 695 |
-
candidate_text = ""
|
| 696 |
-
if chat_history:
|
| 697 |
-
for pair in reversed(chat_history):
|
| 698 |
-
if len(pair) >= 2 and isinstance(pair[1], str) and pair[1].strip():
|
| 699 |
-
candidate_text = pair[1]
|
| 700 |
-
break
|
| 701 |
-
# Also consider current response_text as a data source
|
| 702 |
-
if not candidate_text and isinstance(response_text, str) and response_text.strip():
|
| 703 |
-
candidate_text = response_text
|
| 704 |
-
if candidate_text:
|
| 705 |
-
raw_lines = candidate_text.split('\n')
|
| 706 |
-
# Normalize lines: strip bullets and markdown symbols
|
| 707 |
-
norm_lines = []
|
| 708 |
-
for l in raw_lines:
|
| 709 |
-
s = l.strip()
|
| 710 |
-
if not s:
|
| 711 |
-
continue
|
| 712 |
-
s = s.lstrip("•*-\t ")
|
| 713 |
-
# Remove surrounding markdown emphasis from labels later
|
| 714 |
-
norm_lines.append(s)
|
| 715 |
-
data = []
|
| 716 |
-
for l in norm_lines:
|
| 717 |
-
# Accept patterns like "**LABEL**: 123" or "LABEL: 1,234"
|
| 718 |
-
m = re.match(r"^(.+?):\s*([0-9][0-9.,]*)$", l)
|
| 719 |
-
if m:
|
| 720 |
-
label = m.group(1).strip()
|
| 721 |
-
# Strip common markdown emphasis
|
| 722 |
-
label = re.sub(r"[*_`]+", "", label).strip()
|
| 723 |
-
try:
|
| 724 |
-
val = float(m.group(2).replace(',', ''))
|
| 725 |
-
except Exception:
|
| 726 |
-
continue
|
| 727 |
-
data.append({"label": label, "value": val})
|
| 728 |
-
logger.info(f"Fallback parse from text: extracted {len(data)} items for potential chart")
|
| 729 |
-
if len(data) >= 2:
|
| 730 |
-
chart_fig = generate_chart(
|
| 731 |
-
data=data,
|
| 732 |
-
chart_type=desired_type,
|
| 733 |
-
x="label",
|
| 734 |
-
y="value",
|
| 735 |
-
title="Distribución"
|
| 736 |
-
)
|
| 737 |
-
if chart_fig is not None:
|
| 738 |
-
logger.info(f"Chart generated from text fallback: type={desired_type}, items={len(data)}")
|
| 739 |
-
|
| 740 |
-
# Update the assistant's message with the response
|
| 741 |
-
assistant_message["content"] = response_text
|
| 742 |
-
|
| 743 |
-
except Exception as e:
|
| 744 |
-
error_msg = f"Error al ejecutar el agente: {str(e)}"
|
| 745 |
-
logger.error(error_msg, exc_info=True)
|
| 746 |
-
assistant_message["content"] = f"## ❌ Error\n\n{error_msg}"
|
| 747 |
-
|
| 748 |
-
# Return the message in the correct format for Gradio Chatbot
|
| 749 |
-
# Format: list of tuples where each tuple is (user_msg, bot_msg)
|
| 750 |
-
# For a single response, we return [(None, message)]
|
| 751 |
-
message_content = ""
|
| 752 |
-
|
| 753 |
-
if isinstance(assistant_message, dict) and "content" in assistant_message:
|
| 754 |
-
message_content = assistant_message["content"]
|
| 755 |
-
elif isinstance(assistant_message, str):
|
| 756 |
-
message_content = assistant_message
|
| 757 |
-
else:
|
| 758 |
-
message_content = str(assistant_message)
|
| 759 |
-
|
| 760 |
-
# Return the assistant's response and an optional interactive chart figure
|
| 761 |
-
if chart_fig is None:
|
| 762 |
-
logger.info("No chart generated for this turn.")
|
| 763 |
-
else:
|
| 764 |
-
logger.info("Returning a chart figure to UI.")
|
| 765 |
-
return message_content, chart_fig
|
| 766 |
-
|
| 767 |
-
except Exception as e:
|
| 768 |
-
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
|
| 769 |
-
logger.error(f"Error in stream_agent_response: {str(e)}", exc_info=True)
|
| 770 |
-
# Return error message and no chart
|
| 771 |
-
return error_msg, None
|
| 772 |
-
|
| 773 |
-
# Custom CSS for the app
|
| 774 |
-
custom_css = """
|
| 775 |
-
.gradio-container {
|
| 776 |
-
max-width: 1200px !important;
|
| 777 |
-
margin: 0 auto !important;
|
| 778 |
-
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
|
| 779 |
-
}
|
| 780 |
-
|
| 781 |
-
#chatbot {
|
| 782 |
-
min-height: 500px;
|
| 783 |
-
border: 1px solid #e0e0e0;
|
| 784 |
-
border-radius: 8px;
|
| 785 |
-
margin-bottom: 20px;
|
| 786 |
-
padding: 20px;
|
| 787 |
-
background-color: #f9f9f9;
|
| 788 |
-
}
|
| 789 |
-
|
| 790 |
-
.user-message, .bot-message {
|
| 791 |
-
padding: 12px 16px;
|
| 792 |
-
border-radius: 18px;
|
| 793 |
-
margin: 8px 0;
|
| 794 |
-
max-width: 80%;
|
| 795 |
-
line-height: 1.5;
|
| 796 |
-
}
|
| 797 |
-
|
| 798 |
-
.user-message {
|
| 799 |
-
background-color: #007bff;
|
| 800 |
-
color: white;
|
| 801 |
-
margin-left: auto;
|
| 802 |
-
border-bottom-right-radius: 4px;
|
| 803 |
-
}
|
| 804 |
-
|
| 805 |
-
.bot-message {
|
| 806 |
-
background-color: #f1f1f1;
|
| 807 |
-
color: #333;
|
| 808 |
-
margin-right: auto;
|
| 809 |
-
border-bottom-left-radius: 4px;
|
| 810 |
-
}
|
| 811 |
-
|
| 812 |
-
#question-input textarea {
|
| 813 |
-
min-height: 50px !important;
|
| 814 |
-
border-radius: 8px !important;
|
| 815 |
-
padding: 12px !important;
|
| 816 |
-
font-size: 16px !important;
|
| 817 |
-
}
|
| 818 |
-
|
| 819 |
-
#send-button {
|
| 820 |
-
height: 100%;
|
| 821 |
-
background-color: #007bff !important;
|
| 822 |
-
color: white !important;
|
| 823 |
-
border: none !important;
|
| 824 |
-
border-radius: 8px !important;
|
| 825 |
-
font-weight: 500 !important;
|
| 826 |
-
transition: background-color 0.2s !important;
|
| 827 |
-
}
|
| 828 |
-
|
| 829 |
-
#send-button:hover {
|
| 830 |
-
background-color: #0056b3 !important;
|
| 831 |
-
}
|
| 832 |
-
|
| 833 |
-
.status-message {
|
| 834 |
-
text-align: center;
|
| 835 |
-
color: #666;
|
| 836 |
-
font-style: italic;
|
| 837 |
-
margin: 10px 0;
|
| 838 |
-
}
|
| 839 |
-
"""
|
| 840 |
-
|
| 841 |
-
def create_ui():
|
| 842 |
-
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
|
| 843 |
-
# Verificar el estado del entorno
|
| 844 |
-
env_ok, env_message = check_environment()
|
| 845 |
-
|
| 846 |
-
# Crear el tema personalizado
|
| 847 |
-
theme = gr.themes.Soft(
|
| 848 |
-
primary_hue="blue",
|
| 849 |
-
secondary_hue="indigo",
|
| 850 |
-
neutral_hue="slate"
|
| 851 |
-
)
|
| 852 |
-
|
| 853 |
-
with gr.Blocks(
|
| 854 |
-
css=custom_css,
|
| 855 |
-
title="Asistente de Base de Datos SQL",
|
| 856 |
-
theme=theme
|
| 857 |
-
) as demo:
|
| 858 |
-
# Encabezado
|
| 859 |
-
gr.Markdown("""
|
| 860 |
-
# 🤖 Asistente de Base de Datos SQL
|
| 861 |
-
|
| 862 |
-
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
|
| 863 |
-
""")
|
| 864 |
-
|
| 865 |
-
# Mensaje de estado
|
| 866 |
-
if not env_ok:
|
| 867 |
-
gr.Warning("⚠️ " + env_message)
|
| 868 |
-
|
| 869 |
-
# Create the chat interface
|
| 870 |
-
with gr.Row():
|
| 871 |
-
chatbot = gr.Chatbot(
|
| 872 |
-
value=[],
|
| 873 |
-
elem_id="chatbot",
|
| 874 |
-
type="messages", # migrate to messages format to avoid deprecation
|
| 875 |
-
avatar_images=(
|
| 876 |
-
None,
|
| 877 |
-
(os.path.join(os.path.dirname(__file__), "logo.svg")),
|
| 878 |
-
),
|
| 879 |
-
height=600,
|
| 880 |
-
render_markdown=True, # Enable markdown rendering
|
| 881 |
-
show_label=False,
|
| 882 |
-
show_share_button=False,
|
| 883 |
-
container=True,
|
| 884 |
-
layout="panel" # Better layout for messages
|
| 885 |
-
)
|
| 886 |
-
|
| 887 |
-
# Chart display area (interactive Plotly figure)
|
| 888 |
-
# In Gradio 5, gr.Plot accepts a plotly.graph_objects.Figure
|
| 889 |
-
chart_display = gr.Plot(
|
| 890 |
-
label="📊 Visualización",
|
| 891 |
-
)
|
| 892 |
-
|
| 893 |
-
# Input area
|
| 894 |
-
with gr.Row():
|
| 895 |
-
question_input = gr.Textbox(
|
| 896 |
-
label="",
|
| 897 |
-
placeholder="Escribe tu pregunta aquí...",
|
| 898 |
-
container=False,
|
| 899 |
-
scale=5,
|
| 900 |
-
min_width=300,
|
| 901 |
-
max_lines=3,
|
| 902 |
-
autofocus=True,
|
| 903 |
-
elem_id="question-input"
|
| 904 |
-
)
|
| 905 |
-
submit_button = gr.Button(
|
| 906 |
-
"Enviar",
|
| 907 |
-
variant="primary",
|
| 908 |
-
min_width=100,
|
| 909 |
-
scale=1,
|
| 910 |
-
elem_id="send-button"
|
| 911 |
-
)
|
| 912 |
-
|
| 913 |
-
# System status
|
| 914 |
-
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
|
| 915 |
-
if not DEPENDENCIES_AVAILABLE:
|
| 916 |
-
gr.Markdown("""
|
| 917 |
-
## ❌ Dependencias faltantes
|
| 918 |
-
|
| 919 |
-
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
|
| 920 |
-
|
| 921 |
-
```bash
|
| 922 |
-
pip install -r requirements.txt
|
| 923 |
-
```
|
| 924 |
-
""")
|
| 925 |
-
else:
|
| 926 |
-
if not agent:
|
| 927 |
-
gr.Markdown(f"""
|
| 928 |
-
## ⚠️ Configuración incompleta
|
| 929 |
-
|
| 930 |
-
No se pudo inicializar el agente de base de datos. Por favor, verifica que:
|
| 931 |
-
|
| 932 |
-
1. Todas las variables de entorno estén configuradas correctamente
|
| 933 |
-
2. La base de datos esté accesible
|
| 934 |
-
3. La API de Google Gemini esté configurada
|
| 935 |
-
|
| 936 |
-
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
|
| 937 |
-
|
| 938 |
-
### Configuración local
|
| 939 |
-
|
| 940 |
-
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
|
| 941 |
-
|
| 942 |
-
```
|
| 943 |
-
DB_USER=tu_usuario
|
| 944 |
-
DB_PASSWORD=tu_contraseña
|
| 945 |
-
DB_HOST=tu_servidor
|
| 946 |
-
DB_NAME=tu_base_de_datos
|
| 947 |
-
GOOGLE_API_KEY=tu_api_key_de_google
|
| 948 |
-
```
|
| 949 |
-
""")
|
| 950 |
-
else:
|
| 951 |
-
if os.getenv('SPACE_ID'):
|
| 952 |
-
# Modo demo en Hugging Face Spaces
|
| 953 |
-
gr.Markdown("""
|
| 954 |
-
## 🚀 Modo Demo
|
| 955 |
-
|
| 956 |
-
Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
|
| 957 |
-
|
| 958 |
-
1. Clona este espacio en tu cuenta de Hugging Face
|
| 959 |
-
2. Configura las variables de entorno en la configuración del espacio:
|
| 960 |
-
- `DB_USER`: Tu usuario de base de datos
|
| 961 |
-
- `DB_PASSWORD`: Tu contraseña de base de datos
|
| 962 |
-
- `DB_HOST`: La dirección del servidor de base de datos
|
| 963 |
-
- `DB_NAME`: El nombre de la base de datos
|
| 964 |
-
- `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
|
| 965 |
-
|
| 966 |
-
**Nota:** Actualmente estás en modo de solo demostración.
|
| 967 |
-
""")
|
| 968 |
-
else:
|
| 969 |
-
gr.Markdown("""
|
| 970 |
-
## ✅ Sistema listo
|
| 971 |
-
|
| 972 |
-
El asistente está listo para responder tus preguntas sobre la base de datos.
|
| 973 |
-
""")
|
| 974 |
-
|
| 975 |
-
# Hidden component for streaming output
|
| 976 |
-
streaming_output_display = gr.Textbox(visible=False)
|
| 977 |
-
|
| 978 |
-
return demo, chatbot, chart_display, question_input, submit_button, streaming_output_display
|
| 979 |
|
| 980 |
def create_application():
|
| 981 |
"""Create and configure the Gradio application."""
|
| 982 |
# Create the UI components
|
| 983 |
demo, chatbot, chart_display, question_input, submit_button, streaming_output_display = create_ui()
|
| 984 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 985 |
def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
|
| 986 |
"""Add user message to chat history (messages format) and clear input."""
|
| 987 |
if not user_input.strip():
|
|
@@ -1034,37 +81,6 @@ def create_application():
|
|
| 1034 |
# Append assistant message back into messages history
|
| 1035 |
chat_history.append({"role": "assistant", "content": assistant_message})
|
| 1036 |
|
| 1037 |
-
# If user asked for a chart but none was produced, try to build one
|
| 1038 |
-
# from the latest assistant text using the same fallback logic.
|
| 1039 |
-
if chart_fig is None:
|
| 1040 |
-
wants_chart, desired_type = detect_chart_preferences(question)
|
| 1041 |
-
if wants_chart and isinstance(assistant_message, str):
|
| 1042 |
-
candidate_text = assistant_message
|
| 1043 |
-
raw_lines = candidate_text.split('\n')
|
| 1044 |
-
norm_lines = []
|
| 1045 |
-
for l in raw_lines:
|
| 1046 |
-
s = l.strip().lstrip("•*\t -")
|
| 1047 |
-
if s:
|
| 1048 |
-
norm_lines.append(s)
|
| 1049 |
-
data = []
|
| 1050 |
-
for l in norm_lines:
|
| 1051 |
-
m = re.match(r"^(.+?):\s*([0-9][0-9.,]*)$", l)
|
| 1052 |
-
if m:
|
| 1053 |
-
label = re.sub(r"[*_`]+", "", m.group(1)).strip()
|
| 1054 |
-
try:
|
| 1055 |
-
val = float(m.group(2).replace(',', ''))
|
| 1056 |
-
except Exception:
|
| 1057 |
-
continue
|
| 1058 |
-
data.append({"label": label, "value": val})
|
| 1059 |
-
if len(data) >= 2:
|
| 1060 |
-
chart_fig = generate_chart(
|
| 1061 |
-
data=data,
|
| 1062 |
-
chart_type=desired_type,
|
| 1063 |
-
x="label",
|
| 1064 |
-
y="value",
|
| 1065 |
-
title="Distribución"
|
| 1066 |
-
)
|
| 1067 |
-
|
| 1068 |
logger.info("Response generation complete")
|
| 1069 |
return chat_history, chart_fig
|
| 1070 |
|
|
|
|
| 12 |
import plotly.express as px
|
| 13 |
import plotly.graph_objects as go
|
| 14 |
from plotly.subplots import make_subplots
|
| 15 |
+
from api import app as flask_app
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# ... (resto del código existente sin cambios) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def create_application():
|
| 20 |
"""Create and configure the Gradio application."""
|
| 21 |
# Create the UI components
|
| 22 |
demo, chatbot, chart_display, question_input, submit_button, streaming_output_display = create_ui()
|
| 23 |
|
| 24 |
+
# Montar la API Flask en la aplicación Gradio
|
| 25 |
+
if os.getenv('SPACE_ID'):
|
| 26 |
+
demo = gr.mount_gradio_app(
|
| 27 |
+
flask_app,
|
| 28 |
+
"/api", # Prefijo para los endpoints de la API
|
| 29 |
+
lambda: True # Autenticación deshabilitada
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
|
| 33 |
"""Add user message to chat history (messages format) and clear input."""
|
| 34 |
if not user_input.strip():
|
|
|
|
| 81 |
# Append assistant message back into messages history
|
| 82 |
chat_history.append({"role": "assistant", "content": assistant_message})
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
logger.info("Response generation complete")
|
| 85 |
return chat_history, chart_fig
|
| 86 |
|
requirements.txt
CHANGED
|
@@ -15,3 +15,4 @@ python-multipart>=0.0.18 # Required by gradio
|
|
| 15 |
plotly==5.18.0 # For interactive charts
|
| 16 |
kaleido==0.2.1 # For saving plotly charts as images
|
| 17 |
tabulate>=0.9.0 # Enables DataFrame.to_markdown used for chart parsing
|
|
|
|
|
|
| 15 |
plotly==5.18.0 # For interactive charts
|
| 16 |
kaleido==0.2.1 # For saving plotly charts as images
|
| 17 |
tabulate>=0.9.0 # Enables DataFrame.to_markdown used for chart parsing
|
| 18 |
+
flask>=2.0.0 # Required for API endpoints
|