Jeremy Live
add missing function
84dd234
raw
history blame
14.3 kB
import os
import sys
import re
import gradio as gr
import json
import tempfile
import base64
import io
from typing import List, Dict, Any, Optional, Tuple, Union
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from flask import Flask, request, jsonify
import uuid
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Flask app initialization
flask_app = Flask(__name__)
# Importaciones adicionales necesarias
import os
from dotenv import load_dotenv
from sqlalchemy import create_engine, text
from sqlalchemy.exc import SQLAlchemyError
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.utilities import SQLDatabase
from langgraph.prebuilt import create_react_agent
# Cargar variables de entorno
load_dotenv()
def initialize_llm():
"""Inicializar el modelo LLM de Google Gemini."""
try:
api_key = os.getenv('GOOGLE_API_KEY')
if not api_key:
return None, "No se encontró GOOGLE_API_KEY en las variables de entorno"
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
google_api_key=api_key,
temperature=0.1,
convert_system_message_to_human=True
)
return llm, None
except Exception as e:
return None, str(e)
def setup_database_connection():
"""Configurar la conexión a la base de datos."""
try:
# Obtener configuración de la base de datos
db_user = os.getenv('DB_USER')
db_password = os.getenv('DB_PASSWORD')
db_host = os.getenv('DB_HOST', 'localhost')
db_name = os.getenv('DB_NAME')
if not all([db_user, db_password, db_name]):
return None, "Faltan variables de entorno para la conexión a la base de datos"
# Crear string de conexión
connection_string = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
# Crear engine de SQLAlchemy y probar la conexión
engine = create_engine(connection_string)
with engine.connect() as conn:
conn.execute(text("SELECT 1"))
return connection_string, None
except Exception as e:
return None, str(e)
def create_agent(llm, connection_string):
"""Crear el agente SQL."""
try:
if not llm or not connection_string:
return None, "LLM o conexión a base de datos no proporcionados"
# Crear la base de datos SQL
db = SQLDatabase.from_uri(connection_string)
# Crear el agente SQL
agent = create_sql_agent(
llm=llm,
db=db,
agent_type="zero-shot-react-description",
verbose=True,
return_intermediate_steps=True
)
return agent, None
except Exception as e:
return None, str(e)
def stream_agent_response(question: str, chat_history: List[List[str]] = None) -> Tuple[str, Optional[go.Figure]]:
"""Procesar la respuesta del agente y generar visualizaciones si es necesario."""
try:
# Inicializar componentes
llm, llm_error = initialize_llm()
if llm_error:
return f"Error al inicializar LLM: {llm_error}", None
connection_string, db_error = setup_database_connection()
if db_error:
return f"Error de conexión a base de datos: {db_error}", None
agent, agent_error = create_agent(llm, connection_string)
if agent_error:
return f"Error al crear el agente: {agent_error}", None
# Ejecutar la consulta
response = agent.invoke({"input": question})
# Extraer la respuesta
if hasattr(response, 'output'):
response_text = response.output
elif isinstance(response, dict) and 'output' in response:
response_text = response['output']
else:
response_text = str(response)
# Verificar si hay resultados de SQL que podrían visualizarse
chart_fig = None
if hasattr(response, 'intermediate_steps'):
for step in response.intermediate_steps:
if len(step) > 1 and 'sql_query' in str(step[0]).lower():
# Intentar ejecutar la consulta y crear visualización
try:
query = str(step[0]).split('sql_query:')[1].split('\n')[0].strip()
if 'SELECT' in query.upper():
df = pd.read_sql_query(query, create_engine(connection_string))
if len(df.columns) >= 2:
fig = px.bar(df, x=df.columns[0], y=df.columns[1])
chart_fig = fig
except:
pass
return response_text, chart_fig
except Exception as e:
return f"Error al procesar la solicitud: {str(e)}", None
def create_ui():
"""Crear la interfaz de usuario de Gradio."""
with gr.Blocks(title="🤖 Asistente SQL con Gemini", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🤖 Asistente de Base de Datos SQL")
gr.Markdown("Pregunta cualquier cosa sobre tu base de datos en lenguaje natural")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Chat",
type="messages",
height=400
)
with gr.Row():
question_input = gr.Textbox(
label="Tu pregunta",
placeholder="Ej: ¿Cuántos usuarios hay registrados?",
lines=2,
scale=4
)
submit_button = gr.Button("📤 Enviar", scale=1)
with gr.Column(scale=1):
chart_display = gr.Plot(
label="Visualización de datos",
height=400
)
# Campo oculto para el estado de salida
streaming_output_display = gr.HTML(visible=False)
return demo, chatbot, chart_display, question_input, submit_button, streaming_output_display
# Almacenamiento en memoria de los mensajes
message_store: Dict[str, str] = {}
@flask_app.route('/user_message', methods=['POST'])
def handle_user_message():
try:
data = request.get_json()
if not data or 'message' not in data:
return jsonify({'error': 'Se requiere el campo message'}), 400
user_message = data['message']
# Generar un ID único para este mensaje
message_id = str(uuid.uuid4())
# Almacenar el mensaje
message_store[message_id] = user_message
return jsonify({
'message_id': message_id,
'status': 'success'
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@flask_app.route('/ask', methods=['POST'])
def handle_ask():
try:
data = request.get_json()
if not data or 'message_id' not in data:
return jsonify({'error': 'Se requiere el campo message_id'}), 400
message_id = data['message_id']
# Recuperar el mensaje almacenado
if message_id not in message_store:
return jsonify({'error': 'ID de mensaje no encontrado'}), 404
user_message = message_store[message_id]
# Inicializar componentes necesarios
llm, llm_error = initialize_llm()
if llm_error:
return jsonify({'error': f'Error al inicializar LLM: {llm_error}'}), 500
connection_string, db_error = setup_database_connection()
if db_error:
return jsonify({'error': f'Error de conexión a la base de datos: {db_error}'}), 500
agent, agent_error = create_agent(llm, connection_string)
if agent_error:
return jsonify({'error': f'Error al crear el agente: {agent_error}'}), 500
# Obtener respuesta del agente
response = agent.invoke({"input": user_message})
# Procesar la respuesta
if hasattr(response, 'output') and response.output:
response_text = response.output
elif isinstance(response, str):
response_text = response
elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
response_text = response['output']
else:
response_text = str(response)
# Eliminar el mensaje almacenado después de procesarlo
del message_store[message_id]
return jsonify({
'response': response_text,
'status': 'success'
})
except Exception as e:
return jsonify({'error': str(e)}), 500
# ... (resto del código existente sin cambios) ...
def create_application():
"""Create and configure the Gradio application."""
# Create the UI components
demo, chatbot, chart_display, question_input, submit_button, streaming_output_display = create_ui()
# Montar la API Flask en la aplicación Gradio
if os.getenv('SPACE_ID'):
demo = gr.mount_gradio_app(
flask_app,
demo,
"/api" # Prefijo para los endpoints de la API
)
def user_message(user_input: str, chat_history: List[Dict[str, str]]) -> Tuple[str, List[Dict[str, str]]]:
"""Add user message to chat history (messages format) and clear input."""
if not user_input.strip():
return "", chat_history
logger.info(f"User message: {user_input}")
if chat_history is None:
chat_history = []
# Append user message in messages format
chat_history.append({"role": "user", "content": user_input})
return "", chat_history
def bot_response(chat_history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Optional[go.Figure]]:
"""Generate bot response for messages-format chat history and return optional chart figure."""
if not chat_history:
return chat_history, None
# Ensure last message is a user turn awaiting assistant reply
last = chat_history[-1]
if not isinstance(last, dict) or last.get("role") != "user" or not last.get("content"):
return chat_history, None
try:
question = last["content"]
logger.info(f"Processing question: {question}")
# Convert prior messages to pair history for stream_agent_response()
pair_history: List[List[str]] = []
i = 0
while i < len(chat_history) - 1:
m1 = chat_history[i]
m2 = chat_history[i + 1] if i + 1 < len(chat_history) else None
if (
isinstance(m1, dict)
and m1.get("role") == "user"
and isinstance(m2, dict)
and m2.get("role") == "assistant"
):
pair_history.append([m1.get("content", ""), m2.get("content", "")])
i += 2
else:
i += 1
# Call the agent for this new user question
assistant_message, chart_fig = stream_agent_response(question, pair_history)
# Append assistant message back into messages history
chat_history.append({"role": "assistant", "content": assistant_message})
logger.info("Response generation complete")
return chat_history, chart_fig
except Exception as e:
error_msg = f"## ❌ Error\n\nError al procesar la solicitud:\n\n```\n{str(e)}\n```"
logger.error(error_msg, exc_info=True)
# Ensure we add an assistant error message for the UI
chat_history.append({"role": "assistant", "content": error_msg})
return chat_history, None
# Event handlers
with demo:
# Handle form submission
msg_submit = question_input.submit(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=False
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot, chart_display],
api_name="ask"
)
# Handle button click
btn_click = submit_button.click(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=False
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot, chart_display]
)
return demo
# Create the application
demo = create_application()
# Configuración para Hugging Face Spaces
def get_app():
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
# Verificar si estamos en un entorno de Hugging Face Spaces
if os.getenv('SPACE_ID'):
# Configuración específica para Spaces
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
demo.description = """
Este es un demo del asistente de base de datos SQL.
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
"""
return demo
# Para desarrollo local
if __name__ == "__main__":
# Verificar si se debe ejecutar Flask o Gradio
if os.environ.get('RUN_FLASK', 'false').lower() == 'true':
# Ejecutar solo el servidor Flask
port = int(os.environ.get('PORT', 5000))
flask_app.run(host='0.0.0.0', port=port)
else:
# Configuración para desarrollo local - versión simplificada para Gradio 5.x
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
share=False
)