Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torchvision.transforms as T
|
| 10 |
+
import supervision as sv
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import requests
|
| 13 |
+
import yaml
|
| 14 |
+
import gradio as gr
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
from src.core import YAMLConfig
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
model_configs = {
|
| 21 |
+
"dfine_n_coco":
|
| 22 |
+
{"cfgfile": "configs/dfine/dfine_hgnetv2_n_coco.yml",
|
| 23 |
+
"classinfofile": "configs/coco.yml",
|
| 24 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_n_coco.pth"},
|
| 25 |
+
"dfine_s_coco":
|
| 26 |
+
{"cfgfile": "configs/dfine/dfine_hgnetv2_s_coco.yml",
|
| 27 |
+
"classinfofile": "configs/coco.yml",
|
| 28 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_coco.pth"},
|
| 29 |
+
"dfine_m_coco":
|
| 30 |
+
{"cfgfile": "configs/dfine/dfine_hgnetv2_m_coco.yml",
|
| 31 |
+
"classinfofile": "configs/coco.yml",
|
| 32 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_coco.pth"},
|
| 33 |
+
"dfine_l_coco":
|
| 34 |
+
{"cfgfile": "configs/dfine/dfine_hgnetv2_l_coco.yml",
|
| 35 |
+
"classinfofile": "configs/coco.yml",
|
| 36 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_coco.pth"},
|
| 37 |
+
"dfine_x_coco":
|
| 38 |
+
{"cfgfile": "configs/dfine/dfine_hgnetv2_x_coco.yml",
|
| 39 |
+
"classinfofile": "configs/coco.yml",
|
| 40 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_coco.pth"},
|
| 41 |
+
"dfine_s_obj365":
|
| 42 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj365.yml",
|
| 43 |
+
"classinfofile": "configs/obj365.yml",
|
| 44 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj365.pth"},
|
| 45 |
+
"dfine_m_obj365":
|
| 46 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj365.yml",
|
| 47 |
+
"classinfofile": "configs/obj365.yml",
|
| 48 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj365.pth"},
|
| 49 |
+
"dfine_l_obj365":
|
| 50 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
|
| 51 |
+
"classinfofile": "configs/obj365.yml",
|
| 52 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365.pth"},
|
| 53 |
+
"dfine_l_obj365_e25":
|
| 54 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml",
|
| 55 |
+
"classinfofile": "configs/obj365.yml",
|
| 56 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365_e25.pth"},
|
| 57 |
+
"dfine_x_obj365":
|
| 58 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj365.yml",
|
| 59 |
+
"classinfofile": "configs/obj365.yml",
|
| 60 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj365.pth"},
|
| 61 |
+
"dfine_s_obj2coco":
|
| 62 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_s_obj2coco.yml",
|
| 63 |
+
"classinfofile": "configs/coco.yml",
|
| 64 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj2coco.pth"},
|
| 65 |
+
"dfine_m_obj2coco":
|
| 66 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml",
|
| 67 |
+
"classinfofile": "configs/coco.yml",
|
| 68 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj2coco.pth"},
|
| 69 |
+
"dfine_l_obj2coco_e25":
|
| 70 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_l_obj2coco.yml",
|
| 71 |
+
"classinfofile": "configs/coco.yml",
|
| 72 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj2coco_e25.pth"},
|
| 73 |
+
"dfine_x_obj2coco":
|
| 74 |
+
{"cfgfile": "configs/dfine/objects365/dfine_hgnetv2_x_obj2coco.yml",
|
| 75 |
+
"classinfofile": "configs/coco.yml",
|
| 76 |
+
"weights": "https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj2coco.pth"},
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def download_weights(model_name):
|
| 81 |
+
"""Download model weights if not already present"""
|
| 82 |
+
weights_url = model_configs[model_name]["weights"]
|
| 83 |
+
# Directory path to save weight files
|
| 84 |
+
weights_dir = os.path.join(os.path.dirname(__file__), "weights")
|
| 85 |
+
# Weight file path
|
| 86 |
+
weights_path = os.path.join(weights_dir, model_name + ".pth")
|
| 87 |
+
|
| 88 |
+
# Create weights directory if it doesn't exist
|
| 89 |
+
if not os.path.exists(weights_dir):
|
| 90 |
+
os.makedirs(weights_dir)
|
| 91 |
+
print(f"Created directory: {weights_dir}")
|
| 92 |
+
|
| 93 |
+
# Check if file already exists
|
| 94 |
+
if os.path.exists(weights_path):
|
| 95 |
+
print(f"Weights file already exists at: {weights_path}")
|
| 96 |
+
return weights_path
|
| 97 |
+
|
| 98 |
+
# Download file
|
| 99 |
+
print(f"Downloading weights from {weights_url} to {weights_path}...")
|
| 100 |
+
|
| 101 |
+
response = requests.get(weights_url, stream=True)
|
| 102 |
+
response.raise_for_status() # Check for download errors
|
| 103 |
+
|
| 104 |
+
with open(weights_path, 'wb') as f:
|
| 105 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 106 |
+
f.write(chunk)
|
| 107 |
+
|
| 108 |
+
print(f"Downloaded weights to: {weights_path}")
|
| 109 |
+
return weights_path
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def process_image_for_gradio(model, device, image, model_name, threshold=0.4):
|
| 113 |
+
"""Process image function for Gradio interface"""
|
| 114 |
+
if isinstance(image, np.ndarray):
|
| 115 |
+
# Convert NumPy array to PIL image
|
| 116 |
+
im_pil = Image.fromarray(image)
|
| 117 |
+
else:
|
| 118 |
+
im_pil = image
|
| 119 |
+
|
| 120 |
+
# Load class information
|
| 121 |
+
classinfofile = model_configs[model_name]["classinfofile"]
|
| 122 |
+
classinfo = yaml.load(open(classinfofile, "r"), Loader=yaml.FullLoader)["names"]
|
| 123 |
+
indexing_method = "0-based" if "coco" in classinfofile else "1-based"
|
| 124 |
+
|
| 125 |
+
w, h = im_pil.size
|
| 126 |
+
orig_size = torch.tensor([[w, h]]).to(device)
|
| 127 |
+
|
| 128 |
+
transforms = T.Compose(
|
| 129 |
+
[
|
| 130 |
+
T.Resize((640, 640)),
|
| 131 |
+
T.ToTensor(),
|
| 132 |
+
]
|
| 133 |
+
)
|
| 134 |
+
im_data = transforms(im_pil).unsqueeze(0).to(device)
|
| 135 |
+
|
| 136 |
+
output = model(im_data, orig_size)
|
| 137 |
+
labels, boxes, scores = output
|
| 138 |
+
|
| 139 |
+
# Visualize results
|
| 140 |
+
detections = sv.Detections(
|
| 141 |
+
xyxy=boxes[0].detach().cpu().numpy(),
|
| 142 |
+
confidence=scores[0].detach().cpu().numpy(),
|
| 143 |
+
class_id=labels[0].detach().cpu().numpy().astype(int),
|
| 144 |
+
)
|
| 145 |
+
detections = detections[detections.confidence > threshold]
|
| 146 |
+
|
| 147 |
+
text_scale = sv.calculate_optimal_text_scale(resolution_wh=im_pil.size)
|
| 148 |
+
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=im_pil.size)
|
| 149 |
+
|
| 150 |
+
box_annotator = sv.BoxAnnotator(thickness=line_thickness)
|
| 151 |
+
label_annotator = sv.LabelAnnotator(text_scale=text_scale, smart_position=True)
|
| 152 |
+
|
| 153 |
+
label_texts = [
|
| 154 |
+
f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]} {confidence:.2f}"
|
| 155 |
+
for class_id, confidence
|
| 156 |
+
in zip(detections.class_id, detections.confidence)
|
| 157 |
+
]
|
| 158 |
+
|
| 159 |
+
result_image = im_pil.copy()
|
| 160 |
+
result_image = box_annotator.annotate(scene=result_image, detections=detections)
|
| 161 |
+
result_image = label_annotator.annotate(
|
| 162 |
+
scene=result_image,
|
| 163 |
+
detections=detections,
|
| 164 |
+
labels=label_texts
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
detection_info = [
|
| 168 |
+
f"{classinfo[class_id if indexing_method == '0-based' else class_id - 1]}: {confidence:.2f}, bbox: [{xyxy[0]:.1f}, {xyxy[1]:.1f}, {xyxy[2]:.1f}, {xyxy[3]:.1f}]"
|
| 169 |
+
for class_id, confidence, xyxy
|
| 170 |
+
in zip(detections.class_id, detections.confidence, detections.xyxy)
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
return result_image, "\n".join(detection_info)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class ModelWrapper(nn.Module):
|
| 177 |
+
def __init__(self, cfg):
|
| 178 |
+
super().__init__()
|
| 179 |
+
self.model = cfg.model.deploy()
|
| 180 |
+
self.postprocessor = cfg.postprocessor.deploy()
|
| 181 |
+
|
| 182 |
+
def forward(self, images, orig_target_sizes):
|
| 183 |
+
outputs = self.model(images)
|
| 184 |
+
outputs = self.postprocessor(outputs, orig_target_sizes)
|
| 185 |
+
return outputs
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def load_model(model_name):
|
| 189 |
+
cfgfile = model_configs[model_name]["cfgfile"]
|
| 190 |
+
weights_path = download_weights(model_name)
|
| 191 |
+
|
| 192 |
+
cfg = YAMLConfig(cfgfile, resume=weights_path)
|
| 193 |
+
|
| 194 |
+
if "HGNetv2" in cfg.yaml_cfg:
|
| 195 |
+
cfg.yaml_cfg["HGNetv2"]["pretrained"] = False
|
| 196 |
+
|
| 197 |
+
checkpoint = torch.load(weights_path, map_location="cpu")
|
| 198 |
+
state = checkpoint["ema"]["module"] if "ema" in checkpoint else checkpoint["model"]
|
| 199 |
+
|
| 200 |
+
cfg.model.load_state_dict(state)
|
| 201 |
+
|
| 202 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 203 |
+
model = ModelWrapper(cfg).to(device)
|
| 204 |
+
model.eval()
|
| 205 |
+
|
| 206 |
+
return model, device
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# Dictionary to store loaded models
|
| 210 |
+
loaded_models = {}
|
| 211 |
+
|
| 212 |
+
def process_image(image, model_name, confidence_threshold):
|
| 213 |
+
"""Main processing function for Gradio interface"""
|
| 214 |
+
global loaded_models
|
| 215 |
+
|
| 216 |
+
# Load model if not already loaded
|
| 217 |
+
if model_name not in loaded_models:
|
| 218 |
+
print(f"Loading model: {model_name}")
|
| 219 |
+
model, device = load_model(model_name)
|
| 220 |
+
loaded_models[model_name] = (model, device)
|
| 221 |
+
else:
|
| 222 |
+
print(f"Using cached model: {model_name}")
|
| 223 |
+
model, device = loaded_models[model_name]
|
| 224 |
+
|
| 225 |
+
# Process the image
|
| 226 |
+
return process_image_for_gradio(model, device, image, model_name, confidence_threshold)
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# Create Gradio interface
|
| 230 |
+
demo = gr.Interface(
|
| 231 |
+
fn=process_image,
|
| 232 |
+
inputs=[
|
| 233 |
+
gr.Image(type="pil", label="Input Image"),
|
| 234 |
+
gr.Dropdown(
|
| 235 |
+
choices=list(model_configs.keys()),
|
| 236 |
+
value="dfine_n_coco",
|
| 237 |
+
label="Model Selection"
|
| 238 |
+
),
|
| 239 |
+
gr.Slider(
|
| 240 |
+
minimum=0.1,
|
| 241 |
+
maximum=0.9,
|
| 242 |
+
value=0.4,
|
| 243 |
+
step=0.05,
|
| 244 |
+
label="Confidence Threshold"
|
| 245 |
+
)
|
| 246 |
+
],
|
| 247 |
+
outputs=[
|
| 248 |
+
gr.Image(type="pil", label="Detection Result"),
|
| 249 |
+
gr.Textbox(label="Detected Objects")
|
| 250 |
+
],
|
| 251 |
+
title="D-FINE Object Detection Demo",
|
| 252 |
+
description="Upload an image to see object detection results using the D-FINE model. You can select different models and adjust the confidence threshold.",
|
| 253 |
+
examples=[
|
| 254 |
+
["examples/image1.jpg", "dfine_n_coco", 0.4],
|
| 255 |
+
]
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
if __name__ == "__main__":
|
| 259 |
+
# Launch the Gradio app
|
| 260 |
+
demo.launch(share=True)
|