Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,6 @@ from sklearn.linear_model import LinearRegression, Lasso
|
|
| 7 |
from sklearn.ensemble import RandomForestRegressor
|
| 8 |
from sklearn.metrics import mean_squared_error, r2_score
|
| 9 |
import joblib
|
| 10 |
-
import streamlit as st
|
| 11 |
import plotly.express as px
|
| 12 |
import plotly.figure_factory as ff
|
| 13 |
|
|
@@ -17,295 +16,221 @@ def main():
|
|
| 17 |
st.title("Machine Learning")
|
| 18 |
|
| 19 |
with st.expander("1: Add Your Data Source"):
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
with st.expander("2: DataSet Preview"):
|
| 33 |
if uploaded_file is not None:
|
| 34 |
data = pd.read_csv(uploaded_file)
|
| 35 |
else:
|
| 36 |
-
data= pd.read_csv('example.csv')
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
with view3:
|
| 46 |
-
st.write(" Missing Values")
|
| 47 |
-
st.write(data.isnull().sum())
|
| 48 |
-
with view4:
|
| 49 |
-
st.write(" Data Types")
|
| 50 |
-
st.write(data.dtypes)
|
| 51 |
-
|
| 52 |
|
| 53 |
with st.expander("3: Data Cleaning"):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
with
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
for column in data.select_dtypes(include=['object']).columns:
|
| 98 |
-
data[column].fillna(data[column].mode()[0], inplace=True)
|
| 99 |
-
st.success("Filled missing values with the mode for categorical columns.")
|
| 100 |
-
elif missing_strategy == "Do Nothing":
|
| 101 |
-
st.info("No changes made to missing values.")
|
| 102 |
-
clean7, clean8= st.columns(2)
|
| 103 |
-
with clean7:
|
| 104 |
-
# Display basic info after cleaning
|
| 105 |
-
st.write(" Data Summary After Cleaning")
|
| 106 |
-
st.write(data.describe())
|
| 107 |
-
with clean8:
|
| 108 |
-
st.write("Missing Values After Cleaning:")
|
| 109 |
-
st.write(data.isnull().sum())
|
| 110 |
-
|
| 111 |
with st.expander('4: EDA'):
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
correlation_matrix
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
# Display the figure in Streamlit
|
| 136 |
-
st.plotly_chart(fig)
|
| 137 |
-
eda1, eda2= st.columns(2)
|
| 138 |
-
with eda1:
|
| 139 |
-
# Plotting distributions for numerical features
|
| 140 |
-
if st.checkbox("Show Distribution Plots for Numeric Features"):
|
| 141 |
-
for column in data.select_dtypes(include=[int, float]).columns:
|
| 142 |
-
fig, ax = plt.subplots(figsize=(8, 4))
|
| 143 |
-
sns.histplot(data[column], bins=30, kde=True, ax=ax)
|
| 144 |
-
plt.title(f'Distribution of {column}')
|
| 145 |
-
st.pyplot(fig)
|
| 146 |
-
with eda2:
|
| 147 |
-
# Boxplots for outlier detection
|
| 148 |
-
if st.checkbox("Show Boxplots for Numeric Features"):
|
| 149 |
-
for column in data.select_dtypes(include=[int, float]).columns:
|
| 150 |
-
fig, ax = plt.subplots(figsize=(8, 4))
|
| 151 |
-
sns.boxplot(x=data[column], ax=ax)
|
| 152 |
-
plt.title(f'Boxplot of {column}')
|
| 153 |
-
st.pyplot(fig)
|
| 154 |
-
|
| 155 |
-
with st.expander("5: Feature Engineering"):
|
| 156 |
-
target_column = st.selectbox("Select the target variable", options=data.columns)
|
| 157 |
-
feature_columns = st.multiselect("Select features", options=data.columns.drop(target_column))
|
| 158 |
-
with st.expander("6: Modelling "):
|
| 159 |
-
# Initialize session state for storing results
|
| 160 |
-
if 'model_plot' not in st.session_state:
|
| 161 |
-
st.session_state.model_plot = None
|
| 162 |
-
if 'model_metrics' not in st.session_state:
|
| 163 |
-
st.session_state.model_metrics = None
|
| 164 |
-
|
| 165 |
-
# Model training
|
| 166 |
-
model_option = st.selectbox("Select Regression Model", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
|
| 167 |
-
|
| 168 |
-
if st.button("Train Model (Without Hyperparameter Tuning)"):
|
| 169 |
-
if feature_columns:
|
| 170 |
-
X = data[feature_columns]
|
| 171 |
-
y = data[target_column]
|
| 172 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 173 |
-
|
| 174 |
-
# Initialize the selected model
|
| 175 |
-
if model_option == "Linear Regression":
|
| 176 |
-
model = LinearRegression()
|
| 177 |
-
elif model_option == "Random Forest Regression":
|
| 178 |
-
model = RandomForestRegressor(random_state=42)
|
| 179 |
-
elif model_option == "Lasso Regression":
|
| 180 |
-
model = Lasso()
|
| 181 |
-
|
| 182 |
-
# Train model
|
| 183 |
-
model.fit(X_train, y_train)
|
| 184 |
-
|
| 185 |
-
# Save the model
|
| 186 |
-
model_name = st.text_input('Enter model name', 'my_model')
|
| 187 |
-
model_file_path = f'{model_name}.pkl'
|
| 188 |
-
joblib.dump(model, model_file_path)
|
| 189 |
-
st.success("Model saved successfully!")
|
| 190 |
-
|
| 191 |
-
# Add a download button for the model
|
| 192 |
-
with open(model_file_path, "rb") as f:
|
| 193 |
-
st.download_button(
|
| 194 |
-
label="Download Model",
|
| 195 |
-
data=f,
|
| 196 |
-
file_name=model_file_path,
|
| 197 |
-
mime="application/octet-stream"
|
| 198 |
-
)
|
| 199 |
-
|
| 200 |
-
# Make predictions
|
| 201 |
-
y_pred = model.predict(X_test)
|
| 202 |
-
|
| 203 |
-
# Calculate metrics
|
| 204 |
-
mse = mean_squared_error(y_test, y_pred)
|
| 205 |
-
r2 = r2_score(y_test, y_pred)
|
| 206 |
-
|
| 207 |
-
# Step 7: Visualization of Predictions (Line Plot)
|
| 208 |
-
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
|
| 209 |
-
st.session_state.model_metrics = (mse, r2)
|
| 210 |
-
|
| 211 |
-
# Show results
|
| 212 |
-
st.success(f"Mean Squared Error: {mse:.2f}")
|
| 213 |
-
st.success(f"R^2 Score: {r2:.2f}")
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
# Display model plot if available
|
| 219 |
-
if st.session_state.model_plot is not None:
|
| 220 |
-
y_test, y_pred = st.session_state.model_plot
|
| 221 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 222 |
-
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
|
| 223 |
-
ax.plot(y_pred, label="Predicted Values", color="orange")
|
| 224 |
-
ax.set_title(f'{model_option}: True Values vs Predictions')
|
| 225 |
-
ax.set_xlabel('Index')
|
| 226 |
-
ax.set_ylabel('Values')
|
| 227 |
-
ax.legend()
|
| 228 |
st.pyplot(fig)
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
| 235 |
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
-
with st.expander("
|
| 238 |
-
|
| 239 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
if feature_columns:
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
if hyperparam_model_option == "Linear Regression":
|
| 244 |
-
|
|
|
|
| 245 |
elif hyperparam_model_option == "Random Forest Regression":
|
| 246 |
-
|
|
|
|
| 247 |
elif hyperparam_model_option == "Lasso Regression":
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
# Initialize and perform hyperparameter tuning
|
| 259 |
-
if hyperparam_model_option == "Linear Regression":
|
| 260 |
-
model = LinearRegression()
|
| 261 |
-
grid_search = GridSearchCV(model, param_grid, cv=5)
|
| 262 |
-
elif hyperparam_model_option == "Random Forest Regression":
|
| 263 |
-
model = RandomForestRegressor(random_state=42)
|
| 264 |
-
grid_search = GridSearchCV(model, param_grid, cv=5)
|
| 265 |
-
elif hyperparam_model_option == "Lasso Regression":
|
| 266 |
-
model = Lasso()
|
| 267 |
-
grid_search = GridSearchCV(model, param_grid, cv=5)
|
| 268 |
-
|
| 269 |
-
# Train the model
|
| 270 |
-
grid_search.fit(X_train, y_train)
|
| 271 |
-
|
| 272 |
-
# Make predictions
|
| 273 |
-
best_model = grid_search.best_estimator_
|
| 274 |
-
y_pred = best_model.predict(X_test)
|
| 275 |
-
|
| 276 |
-
# Calculate metrics
|
| 277 |
-
mse = mean_squared_error(y_test, y_pred)
|
| 278 |
-
r2 = r2_score(y_test, y_pred)
|
| 279 |
-
|
| 280 |
-
# Step 9: Visualization of Predictions (Line Plot)
|
| 281 |
-
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
|
| 282 |
-
st.session_state.model_metrics = (mse, r2)
|
| 283 |
-
|
| 284 |
-
# Show results
|
| 285 |
-
st.success(f"Best Parameters: {grid_search.best_params_}")
|
| 286 |
-
st.success(f"Mean Squared Error: {mse:.2f}")
|
| 287 |
-
st.success(f"R^2 Score: {r2:.2f}")
|
| 288 |
-
|
| 289 |
-
# Display hyperparameter tuned model plot if available
|
| 290 |
-
if st.session_state.model_plot is not None:
|
| 291 |
-
y_test, y_pred = st.session_state.model_plot
|
| 292 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
| 293 |
-
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
|
| 294 |
-
ax.plot(y_pred, label="Predicted Values", color="orange")
|
| 295 |
-
ax.set_title(f'{hyperparam_model_option}: True Values vs Predictions (Tuned)')
|
| 296 |
-
ax.set_xlabel('Index')
|
| 297 |
-
ax.set_ylabel('Values')
|
| 298 |
-
ax.legend()
|
| 299 |
-
st.pyplot(fig)
|
| 300 |
-
|
| 301 |
-
# Display metrics if available
|
| 302 |
-
if st.session_state.model_metrics is not None:
|
| 303 |
-
mse, r2 = st.session_state.model_metrics
|
| 304 |
-
st.success(f"Mean Squared Error: {mse:.2f}")
|
| 305 |
-
st.success(f"R^2 Score: {r2:.2f}")
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
# Run the app
|
| 310 |
-
if __name__ == "__main__":
|
| 311 |
main()
|
|
|
|
| 7 |
from sklearn.ensemble import RandomForestRegressor
|
| 8 |
from sklearn.metrics import mean_squared_error, r2_score
|
| 9 |
import joblib
|
|
|
|
| 10 |
import plotly.express as px
|
| 11 |
import plotly.figure_factory as ff
|
| 12 |
|
|
|
|
| 16 |
st.title("Machine Learning")
|
| 17 |
|
| 18 |
with st.expander("1: Add Your Data Source"):
|
| 19 |
+
uploaded_file = st.file_uploader("Upload your CSV or Excel file", type=["csv", "xlsx", "xls"])
|
| 20 |
+
|
| 21 |
+
if uploaded_file is None:
|
| 22 |
+
try:
|
| 23 |
+
data = pd.read_csv('example.csv') # Load example CSV
|
| 24 |
+
st.info("Loaded example.csv")
|
| 25 |
+
except FileNotFoundError:
|
| 26 |
+
st.error("Example CSV file not found. Please upload your own CSV or Excel file.")
|
| 27 |
+
except pd.errors.EmptyDataError:
|
| 28 |
+
st.error("Example CSV file is empty or invalid.")
|
| 29 |
+
else:
|
| 30 |
+
try:
|
| 31 |
+
if uploaded_file.name.endswith('.csv'):
|
| 32 |
+
data = pd.read_csv(uploaded_file)
|
| 33 |
+
elif uploaded_file.name.endswith(('.xlsx', '.xls')):
|
| 34 |
+
data = pd.read_excel(uploaded_file)
|
| 35 |
+
|
| 36 |
+
# Check if the file has content
|
| 37 |
+
if data.empty:
|
| 38 |
+
st.error("Uploaded file is empty. Please upload a valid CSV or Excel file.")
|
| 39 |
+
else:
|
| 40 |
+
st.success("File uploaded successfully!")
|
| 41 |
+
except pd.errors.EmptyDataError:
|
| 42 |
+
st.error("The uploaded file is empty or contains no readable data.")
|
| 43 |
+
except ValueError:
|
| 44 |
+
st.error("Error in file format. Please ensure the file is a valid CSV or Excel.")
|
| 45 |
+
except Exception as e:
|
| 46 |
+
st.error(f"An error occurred: {e}")
|
| 47 |
|
| 48 |
with st.expander("2: DataSet Preview"):
|
| 49 |
if uploaded_file is not None:
|
| 50 |
data = pd.read_csv(uploaded_file)
|
| 51 |
else:
|
| 52 |
+
data = pd.read_csv('example.csv')
|
| 53 |
+
st.write("Data Overview")
|
| 54 |
+
st.dataframe(data.head())
|
| 55 |
+
st.write("Data Description")
|
| 56 |
+
st.write(data.describe())
|
| 57 |
+
st.write("Missing Values")
|
| 58 |
+
st.write(data.isnull().sum())
|
| 59 |
+
st.write("Data Types")
|
| 60 |
+
st.write(data.dtypes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
with st.expander("3: Data Cleaning"):
|
| 63 |
+
st.write("Data Summary Before Cleaning")
|
| 64 |
+
st.write(data.describe())
|
| 65 |
+
st.write("Missing Values Before Cleaning:")
|
| 66 |
+
st.write(data.isnull().sum())
|
| 67 |
+
|
| 68 |
+
if st.checkbox("Show Missing Values Heatmap"):
|
| 69 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 70 |
+
sns.heatmap(data.isnull(), cbar=False, cmap='viridis', ax=ax)
|
| 71 |
+
plt.title("Missing Values Heatmap")
|
| 72 |
+
st.pyplot(fig)
|
| 73 |
+
|
| 74 |
+
if st.checkbox("Remove Duplicate Rows"):
|
| 75 |
+
initial_shape = data.shape
|
| 76 |
+
data = data.drop_duplicates()
|
| 77 |
+
st.success(f"Removed {initial_shape[0] - data.shape[0]} duplicate rows.")
|
| 78 |
+
|
| 79 |
+
missing_strategy = st.selectbox(
|
| 80 |
+
"Choose a strategy for handling missing values",
|
| 81 |
+
options=["Drop Missing Values", "Fill with Mean", "Fill with Median", "Fill with Mode", "Do Nothing"]
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
if st.button("Apply Missing Value Strategy"):
|
| 85 |
+
if missing_strategy == "Drop Missing Values":
|
| 86 |
+
data.dropna(inplace=True)
|
| 87 |
+
st.success("Dropped rows with missing values.")
|
| 88 |
+
elif missing_strategy == "Fill with Mean":
|
| 89 |
+
data.fillna(data.mean(), inplace=True)
|
| 90 |
+
st.success("Filled missing values with the mean.")
|
| 91 |
+
elif missing_strategy == "Fill with Median":
|
| 92 |
+
data.fillna(data.median(), inplace=True)
|
| 93 |
+
st.success("Filled missing values with the median.")
|
| 94 |
+
elif missing_strategy == "Fill with Mode":
|
| 95 |
+
for column in data.select_dtypes(include=['object']).columns:
|
| 96 |
+
data[column].fillna(data[column].mode()[0], inplace=True)
|
| 97 |
+
st.success("Filled missing values with the mode for categorical columns.")
|
| 98 |
+
elif missing_strategy == "Do Nothing":
|
| 99 |
+
st.info("No changes made to missing values.")
|
| 100 |
+
|
| 101 |
+
st.write("Data Summary After Cleaning")
|
| 102 |
+
st.write(data.describe())
|
| 103 |
+
st.write("Missing Values After Cleaning:")
|
| 104 |
+
st.write(data.isnull().sum())
|
| 105 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
with st.expander('4: EDA'):
|
| 107 |
+
st.write("Correlation Matrix")
|
| 108 |
+
correlation_matrix = data.corr()
|
| 109 |
+
fig = ff.create_annotated_heatmap(
|
| 110 |
+
z=correlation_matrix.values,
|
| 111 |
+
x=list(correlation_matrix.columns),
|
| 112 |
+
y=list(correlation_matrix.index),
|
| 113 |
+
)
|
| 114 |
+
fig.update_layout(
|
| 115 |
+
title="Correlation Matrix",
|
| 116 |
+
xaxis_title="Features",
|
| 117 |
+
yaxis_title="Features",
|
| 118 |
+
width=700,
|
| 119 |
+
height=500,
|
| 120 |
+
)
|
| 121 |
+
st.plotly_chart(fig)
|
| 122 |
+
|
| 123 |
+
if st.checkbox("Show Distribution Plots for Numeric Features"):
|
| 124 |
+
for column in data.select_dtypes(include=[int, float]).columns:
|
| 125 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
| 126 |
+
sns.histplot(data[column], bins=30, kde=True, ax=ax)
|
| 127 |
+
plt.title(f'Distribution of {column}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
st.pyplot(fig)
|
| 129 |
|
| 130 |
+
if st.checkbox("Show Boxplots for Numeric Features"):
|
| 131 |
+
for column in data.select_dtypes(include=[int, float]).columns:
|
| 132 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
| 133 |
+
sns.boxplot(x=data[column], ax=ax)
|
| 134 |
+
plt.title(f'Boxplot of {column}')
|
| 135 |
+
st.pyplot(fig)
|
| 136 |
|
| 137 |
+
with st.expander("5: Feature Engineering"):
|
| 138 |
+
target_column = st.selectbox("Select the target variable", options=data.columns)
|
| 139 |
+
feature_columns = st.multiselect("Select features", options=data.columns.drop(target_column))
|
| 140 |
|
| 141 |
+
with st.expander("6: Modelling"):
|
| 142 |
+
if 'model_plot' not in st.session_state:
|
| 143 |
+
st.session_state.model_plot = None
|
| 144 |
+
if 'model_metrics' not in st.session_state:
|
| 145 |
+
st.session_state.model_metrics = None
|
| 146 |
+
|
| 147 |
+
model_option = st.selectbox("Select Regression Model", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
|
| 148 |
+
|
| 149 |
+
if st.button("Train Model (Without Hyperparameter Tuning)"):
|
| 150 |
if feature_columns:
|
| 151 |
+
X = data[feature_columns]
|
| 152 |
+
y = data[target_column]
|
| 153 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 154 |
+
|
| 155 |
+
if model_option == "Linear Regression":
|
| 156 |
+
model = LinearRegression()
|
| 157 |
+
elif model_option == "Random Forest Regression":
|
| 158 |
+
model = RandomForestRegressor(random_state=42)
|
| 159 |
+
elif model_option == "Lasso Regression":
|
| 160 |
+
model = Lasso()
|
| 161 |
+
|
| 162 |
+
model.fit(X_train, y_train)
|
| 163 |
+
|
| 164 |
+
model_name = st.text_input('Enter model name', 'my_model')
|
| 165 |
+
model_file_path = f'{model_name}.pkl'
|
| 166 |
+
joblib.dump(model, model_file_path)
|
| 167 |
+
st.success("Model saved successfully!")
|
| 168 |
+
|
| 169 |
+
with open(model_file_path, "rb") as f:
|
| 170 |
+
st.download_button(
|
| 171 |
+
label="Download Model",
|
| 172 |
+
data=f,
|
| 173 |
+
file_name=model_file_path,
|
| 174 |
+
mime="application/octet-stream"
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
y_pred = model.predict(X_test)
|
| 178 |
+
mse = mean_squared_error(y_test, y_pred)
|
| 179 |
+
r2 = r2_score(y_test, y_pred)
|
| 180 |
+
|
| 181 |
+
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
|
| 182 |
+
st.session_state.model_metrics = (mse, r2)
|
| 183 |
+
|
| 184 |
+
st.success(f"Mean Squared Error: {mse:.2f}")
|
| 185 |
+
st.success(f"R^2 Score: {r2:.2f}")
|
| 186 |
+
|
| 187 |
+
if st.session_state.model_plot is not None:
|
| 188 |
+
y_test, y_pred = st.session_state.model_plot
|
| 189 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 190 |
+
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
|
| 191 |
+
ax.plot(y_pred, label="Predicted Values", color="orange")
|
| 192 |
+
ax.set_title(f'{model_option}: True Values vs Predictions')
|
| 193 |
+
ax.set_xlabel('Index')
|
| 194 |
+
ax.set_ylabel('Values')
|
| 195 |
+
ax.legend()
|
| 196 |
+
st.pyplot(fig)
|
| 197 |
+
|
| 198 |
+
if st.session_state.model_metrics is not None:
|
| 199 |
+
mse, r2 = st.session_state.model_metrics
|
| 200 |
+
st.success(f"Mean Squared Error: {mse:.2f}")
|
| 201 |
+
st.success(f"R^2 Score: {r2:.2f}")
|
| 202 |
+
|
| 203 |
+
with st.expander("7: HyperParameter"):
|
| 204 |
+
if feature_columns:
|
| 205 |
+
hyperparam_model_option = st.selectbox("Select Model for Hyperparameter Tuning", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
|
| 206 |
+
|
| 207 |
+
if hyperparam_model_option == "Linear Regression":
|
| 208 |
+
param_grid = {'fit_intercept': [True, False]}
|
| 209 |
+
elif hyperparam_model_option == "Random Forest Regression":
|
| 210 |
+
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10]}
|
| 211 |
+
elif hyperparam_model_option == "Lasso Regression":
|
| 212 |
+
param_grid = {'alpha': [0.01, 0.1, 1, 10], 'max_iter': [1000, 5000, 10000]}
|
| 213 |
+
|
| 214 |
+
if st.button("Train Model with Hyperparameter Tuning"):
|
| 215 |
+
X = data[feature_columns]
|
| 216 |
+
y = data[target_column]
|
| 217 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 218 |
|
| 219 |
if hyperparam_model_option == "Linear Regression":
|
| 220 |
+
model = LinearRegression()
|
| 221 |
+
grid_search = GridSearchCV(model, param_grid, cv=5)
|
| 222 |
elif hyperparam_model_option == "Random Forest Regression":
|
| 223 |
+
model = RandomForestRegressor(random_state=42)
|
| 224 |
+
grid_search = GridSearchCV(model, param_grid, cv=5)
|
| 225 |
elif hyperparam_model_option == "Lasso Regression":
|
| 226 |
+
model = Lasso()
|
| 227 |
+
grid_search = GridSearchCV(model, param_grid, cv=5)
|
| 228 |
+
|
| 229 |
+
grid_search.fit(X_train, y_train)
|
| 230 |
+
best_params = grid_search.best_params_
|
| 231 |
+
|
| 232 |
+
st.success(f"Best Hyperparameters: {best_params}")
|
| 233 |
+
|
| 234 |
+
# Run the application
|
| 235 |
+
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
main()
|