Spaces:
Sleeping
Sleeping
File size: 14,098 Bytes
6c88ced 8a9febf 6c88ced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.linear_model import LinearRegression, Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
import joblib
import streamlit as st
import plotly.express as px
import plotly.figure_factory as ff
# Main function
def main():
st.set_page_config(page_title="Data Automation-Machine Learning")
st.title("Machine Learning")
with st.expander("1: Add Your Data Source"):
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
# If no file is uploaded, load example.csv
if uploaded_file is None:
try:
data = pd.read_csv('example.csv') # Load example CSV
st.info("Loaded example.csv")
except FileNotFoundError:
st.error("Example CSV file not found. Please upload your own CSV file.")
else:
data = pd.read_csv(uploaded_file)
with st.expander("2: DataSet Preview"):
if uploaded_file is not None:
data = pd.read_csv(uploaded_file)
# Step 2: Data Overview
view1, view2,view3, view4 = st.columns(4)
with view1:
st.write("Data Overview")
st.dataframe(data.head())
with view2:
st.write(" Data Description")
st.write(data.describe())
with view3:
st.write(" Missing Values")
st.write(data.isnull().sum())
with view4:
st.write(" Data Types")
st.write(data.dtypes)
with st.expander("3: Data Cleaning"):
# Step 3: Data Cleaning
clean1, clean2, clean3 = st.columns(3)
with clean1:
st.write(" Data Summary Before Cleaning")
st.write(data.describe())
with clean2:
st.write("Missing Values Before Cleaning:")
st.write(data.isnull().sum())
with clean3:
# Visualize missing values
if st.checkbox("Show Missing Values Heatmap"):
fig, ax = plt.subplots(figsize=(10, 6))
sns.heatmap(data.isnull(), cbar=False, cmap='viridis', ax=ax)
plt.title("Missing Values Heatmap")
st.pyplot(fig)
clean4, clean5= st.columns(2)
with clean4:
# Remove duplicates
if st.checkbox("Remove Duplicate Rows"):
initial_shape = data.shape
data = data.drop_duplicates()
st.success(f"Removed {initial_shape[0] - data.shape[0]} duplicate rows.")
with clean5:
# Handle missing values
missing_strategy = st.selectbox(
"Choose a strategy for handling missing values",
options=["Drop Missing Values", "Fill with Mean", "Fill with Median", "Fill with Mode", "Do Nothing"]
)
if st.button("Apply Missing Value Strategy"):
if missing_strategy == "Drop Missing Values":
data.dropna(inplace=True)
st.success("Dropped rows with missing values.")
elif missing_strategy == "Fill with Mean":
data.fillna(data.mean(), inplace=True)
st.success("Filled missing values with the mean.")
elif missing_strategy == "Fill with Median":
data.fillna(data.median(), inplace=True)
st.success("Filled missing values with the median.")
elif missing_strategy == "Fill with Mode":
for column in data.select_dtypes(include=['object']).columns:
data[column].fillna(data[column].mode()[0], inplace=True)
st.success("Filled missing values with the mode for categorical columns.")
elif missing_strategy == "Do Nothing":
st.info("No changes made to missing values.")
clean7, clean8= st.columns(2)
with clean7:
# Display basic info after cleaning
st.write(" Data Summary After Cleaning")
st.write(data.describe())
with clean8:
st.write("Missing Values After Cleaning:")
st.write(data.isnull().sum())
with st.expander('4: EDA'):
# Step 4: Exploratory Data Analysis (EDA)
st.write("Correlation Matrix")
# Calculate the correlation matrix
correlation_matrix = data.corr()
# Create a heatmap using Plotly
fig = ff.create_annotated_heatmap(
z=correlation_matrix.values,
x=list(correlation_matrix.columns),
y=list(correlation_matrix.index),
)
# Update layout for better readability
fig.update_layout(
title="Correlation Matrix",
xaxis_title="Features",
yaxis_title="Features",
width=700, # Adjust width as needed
height=500, # Adjust height as needed
)
# Display the figure in Streamlit
st.plotly_chart(fig)
eda1, eda2= st.columns(2)
with eda1:
# Plotting distributions for numerical features
if st.checkbox("Show Distribution Plots for Numeric Features"):
for column in data.select_dtypes(include=[int, float]).columns:
fig, ax = plt.subplots(figsize=(8, 4))
sns.histplot(data[column], bins=30, kde=True, ax=ax)
plt.title(f'Distribution of {column}')
st.pyplot(fig)
with eda2:
# Boxplots for outlier detection
if st.checkbox("Show Boxplots for Numeric Features"):
for column in data.select_dtypes(include=[int, float]).columns:
fig, ax = plt.subplots(figsize=(8, 4))
sns.boxplot(x=data[column], ax=ax)
plt.title(f'Boxplot of {column}')
st.pyplot(fig)
with st.expander("5: Feature Engineering"):
target_column = st.selectbox("Select the target variable", options=data.columns)
feature_columns = st.multiselect("Select features", options=data.columns.drop(target_column))
with st.expander("6: Modelling "):
# Initialize session state for storing results
if 'model_plot' not in st.session_state:
st.session_state.model_plot = None
if 'model_metrics' not in st.session_state:
st.session_state.model_metrics = None
# Model training
model_option = st.selectbox("Select Regression Model", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
if st.button("Train Model (Without Hyperparameter Tuning)"):
if feature_columns:
X = data[feature_columns]
y = data[target_column]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize the selected model
if model_option == "Linear Regression":
model = LinearRegression()
elif model_option == "Random Forest Regression":
model = RandomForestRegressor(random_state=42)
elif model_option == "Lasso Regression":
model = Lasso()
# Train model
model.fit(X_train, y_train)
# Save the model
model_name = st.text_input('Enter model name', 'my_model')
model_file_path = f'{model_name}.pkl'
joblib.dump(model, model_file_path)
st.success("Model saved successfully!")
# Add a download button for the model
with open(model_file_path, "rb") as f:
st.download_button(
label="Download Model",
data=f,
file_name=model_file_path,
mime="application/octet-stream"
)
# Make predictions
y_pred = model.predict(X_test)
# Calculate metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Step 7: Visualization of Predictions (Line Plot)
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
st.session_state.model_metrics = (mse, r2)
# Show results
st.success(f"Mean Squared Error: {mse:.2f}")
st.success(f"R^2 Score: {r2:.2f}")
# Display model plot if available
if st.session_state.model_plot is not None:
y_test, y_pred = st.session_state.model_plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
ax.plot(y_pred, label="Predicted Values", color="orange")
ax.set_title(f'{model_option}: True Values vs Predictions')
ax.set_xlabel('Index')
ax.set_ylabel('Values')
ax.legend()
st.pyplot(fig)
# Display metrics if available
if st.session_state.model_metrics is not None:
mse, r2 = st.session_state.model_metrics
st.success(f"Mean Squared Error: {mse:.2f}")
st.success(f"R^2 Score: {r2:.2f}")
with st.expander("7: HyperParameter"):
# Step 8: Hyperparameter Tuning
st.write("Hyperparameter Tuning")
if feature_columns:
hyperparam_model_option = st.selectbox("Select Model for Hyperparameter Tuning", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
if hyperparam_model_option == "Linear Regression":
param_grid = {'fit_intercept': [True, False]}
elif hyperparam_model_option == "Random Forest Regression":
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10]}
elif hyperparam_model_option == "Lasso Regression":
param_grid = {'alpha': [0.01, 0.1, 1, 10], 'max_iter': [1000, 5000, 10000]}
if st.button("Train Model with Hyperparameter Tuning"):
# Prepare data for training
X = data[feature_columns]
y = data[target_column]
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and perform hyperparameter tuning
if hyperparam_model_option == "Linear Regression":
model = LinearRegression()
grid_search = GridSearchCV(model, param_grid, cv=5)
elif hyperparam_model_option == "Random Forest Regression":
model = RandomForestRegressor(random_state=42)
grid_search = GridSearchCV(model, param_grid, cv=5)
elif hyperparam_model_option == "Lasso Regression":
model = Lasso()
grid_search = GridSearchCV(model, param_grid, cv=5)
# Train the model
grid_search.fit(X_train, y_train)
# Make predictions
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)
# Calculate metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Step 9: Visualization of Predictions (Line Plot)
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
st.session_state.model_metrics = (mse, r2)
# Show results
st.success(f"Best Parameters: {grid_search.best_params_}")
st.success(f"Mean Squared Error: {mse:.2f}")
st.success(f"R^2 Score: {r2:.2f}")
# Display hyperparameter tuned model plot if available
if st.session_state.model_plot is not None:
y_test, y_pred = st.session_state.model_plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
ax.plot(y_pred, label="Predicted Values", color="orange")
ax.set_title(f'{hyperparam_model_option}: True Values vs Predictions (Tuned)')
ax.set_xlabel('Index')
ax.set_ylabel('Values')
ax.legend()
st.pyplot(fig)
# Display metrics if available
if st.session_state.model_metrics is not None:
mse, r2 = st.session_state.model_metrics
st.success(f"Mean Squared Error: {mse:.2f}")
st.success(f"R^2 Score: {r2:.2f}")
# Run the app
if __name__ == "__main__":
main()
|