Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from sklearn.linear_model import LinearRegression, Lasso
|
|
7 |
from sklearn.ensemble import RandomForestRegressor
|
8 |
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
import joblib
|
10 |
-
import streamlit as st
|
11 |
import plotly.express as px
|
12 |
import plotly.figure_factory as ff
|
13 |
|
@@ -18,7 +17,7 @@ def main():
|
|
18 |
|
19 |
with st.expander("1: Add Your Data Source"):
|
20 |
uploaded_file = st.file_uploader("Upload your CSV or Excel file", type=["csv", "xlsx", "xls"])
|
21 |
-
|
22 |
if uploaded_file is None:
|
23 |
try:
|
24 |
data = pd.read_csv('example.csv') # Load example CSV
|
@@ -46,284 +45,189 @@ def main():
|
|
46 |
except Exception as e:
|
47 |
st.error(f"An error occurred: {e}")
|
48 |
|
49 |
-
|
50 |
with st.expander("2: DataSet Preview"):
|
51 |
if uploaded_file is not None:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
with view2:
|
61 |
-
st.write(" Data Description")
|
62 |
-
st.write(data.describe())
|
63 |
-
with view3:
|
64 |
-
st.write(" Missing Values")
|
65 |
-
st.write(data.isnull().sum())
|
66 |
-
with view4:
|
67 |
-
st.write(" Data Types")
|
68 |
-
st.write(data.dtypes)
|
69 |
-
|
70 |
|
71 |
with st.expander("3: Data Cleaning"):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
with
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
)
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
for column in data.select_dtypes(include=['object']).columns:
|
116 |
-
data[column].fillna(data[column].mode()[0], inplace=True)
|
117 |
-
st.success("Filled missing values with the mode for categorical columns.")
|
118 |
-
elif missing_strategy == "Do Nothing":
|
119 |
-
st.info("No changes made to missing values.")
|
120 |
-
clean7, clean8= st.columns(2)
|
121 |
-
with clean7:
|
122 |
-
# Display basic info after cleaning
|
123 |
-
st.write(" Data Summary After Cleaning")
|
124 |
-
st.write(data.describe())
|
125 |
-
with clean8:
|
126 |
-
st.write("Missing Values After Cleaning:")
|
127 |
-
st.write(data.isnull().sum())
|
128 |
-
|
129 |
with st.expander('4: EDA'):
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
correlation_matrix
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
if st.checkbox("Show Distribution Plots for Numeric Features"):
|
159 |
-
for column in data.select_dtypes(include=[int, float]).columns:
|
160 |
-
fig, ax = plt.subplots(figsize=(8, 4))
|
161 |
-
sns.histplot(data[column], bins=30, kde=True, ax=ax)
|
162 |
-
plt.title(f'Distribution of {column}')
|
163 |
-
st.pyplot(fig)
|
164 |
-
with eda2:
|
165 |
-
# Boxplots for outlier detection
|
166 |
-
if st.checkbox("Show Boxplots for Numeric Features"):
|
167 |
-
for column in data.select_dtypes(include=[int, float]).columns:
|
168 |
-
fig, ax = plt.subplots(figsize=(8, 4))
|
169 |
-
sns.boxplot(x=data[column], ax=ax)
|
170 |
-
plt.title(f'Boxplot of {column}')
|
171 |
-
st.pyplot(fig)
|
172 |
-
|
173 |
-
with st.expander("5: Feature Engineering"):
|
174 |
-
target_column = st.selectbox("Select the target variable", options=data.columns)
|
175 |
-
feature_columns = st.multiselect("Select features", options=data.columns.drop(target_column))
|
176 |
-
with st.expander("6: Modelling "):
|
177 |
-
# Initialize session state for storing results
|
178 |
-
if 'model_plot' not in st.session_state:
|
179 |
-
st.session_state.model_plot = None
|
180 |
-
if 'model_metrics' not in st.session_state:
|
181 |
-
st.session_state.model_metrics = None
|
182 |
-
|
183 |
-
# Model training
|
184 |
-
model_option = st.selectbox("Select Regression Model", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
|
185 |
-
|
186 |
-
if st.button("Train Model (Without Hyperparameter Tuning)"):
|
187 |
-
if feature_columns:
|
188 |
-
X = data[feature_columns]
|
189 |
-
y = data[target_column]
|
190 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
191 |
-
|
192 |
-
# Initialize the selected model
|
193 |
-
if model_option == "Linear Regression":
|
194 |
-
model = LinearRegression()
|
195 |
-
elif model_option == "Random Forest Regression":
|
196 |
-
model = RandomForestRegressor(random_state=42)
|
197 |
-
elif model_option == "Lasso Regression":
|
198 |
-
model = Lasso()
|
199 |
-
|
200 |
-
# Train model
|
201 |
-
model.fit(X_train, y_train)
|
202 |
-
|
203 |
-
# Save the model
|
204 |
-
model_name = st.text_input('Enter model name', 'my_model')
|
205 |
-
model_file_path = f'{model_name}.pkl'
|
206 |
-
joblib.dump(model, model_file_path)
|
207 |
-
st.success("Model saved successfully!")
|
208 |
-
|
209 |
-
# Add a download button for the model
|
210 |
-
with open(model_file_path, "rb") as f:
|
211 |
-
st.download_button(
|
212 |
-
label="Download Model",
|
213 |
-
data=f,
|
214 |
-
file_name=model_file_path,
|
215 |
-
mime="application/octet-stream"
|
216 |
-
)
|
217 |
-
|
218 |
-
# Make predictions
|
219 |
-
y_pred = model.predict(X_test)
|
220 |
-
|
221 |
-
# Calculate metrics
|
222 |
-
mse = mean_squared_error(y_test, y_pred)
|
223 |
-
r2 = r2_score(y_test, y_pred)
|
224 |
-
|
225 |
-
# Step 7: Visualization of Predictions (Line Plot)
|
226 |
-
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
|
227 |
-
st.session_state.model_metrics = (mse, r2)
|
228 |
-
|
229 |
-
# Show results
|
230 |
-
st.success(f"Mean Squared Error: {mse:.2f}")
|
231 |
-
st.success(f"R^2 Score: {r2:.2f}")
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
# Display model plot if available
|
237 |
-
if st.session_state.model_plot is not None:
|
238 |
-
y_test, y_pred = st.session_state.model_plot
|
239 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
240 |
-
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
|
241 |
-
ax.plot(y_pred, label="Predicted Values", color="orange")
|
242 |
-
ax.set_title(f'{model_option}: True Values vs Predictions')
|
243 |
-
ax.set_xlabel('Index')
|
244 |
-
ax.set_ylabel('Values')
|
245 |
-
ax.legend()
|
246 |
st.pyplot(fig)
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
st.success(f"Mean Squared Error: {mse:.2f}")
|
252 |
-
st.success(f"R^2 Score: {r2:.2f}")
|
253 |
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
if feature_columns:
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
if hyperparam_model_option == "Linear Regression":
|
262 |
-
|
|
|
263 |
elif hyperparam_model_option == "Random Forest Regression":
|
264 |
-
|
|
|
265 |
elif hyperparam_model_option == "Lasso Regression":
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
# Initialize and perform hyperparameter tuning
|
277 |
-
if hyperparam_model_option == "Linear Regression":
|
278 |
-
model = LinearRegression()
|
279 |
-
grid_search = GridSearchCV(model, param_grid, cv=5)
|
280 |
-
elif hyperparam_model_option == "Random Forest Regression":
|
281 |
-
model = RandomForestRegressor(random_state=42)
|
282 |
-
grid_search = GridSearchCV(model, param_grid, cv=5)
|
283 |
-
elif hyperparam_model_option == "Lasso Regression":
|
284 |
-
model = Lasso()
|
285 |
-
grid_search = GridSearchCV(model, param_grid, cv=5)
|
286 |
-
|
287 |
-
# Train the model
|
288 |
-
grid_search.fit(X_train, y_train)
|
289 |
-
|
290 |
-
# Make predictions
|
291 |
-
best_model = grid_search.best_estimator_
|
292 |
-
y_pred = best_model.predict(X_test)
|
293 |
-
|
294 |
-
# Calculate metrics
|
295 |
-
mse = mean_squared_error(y_test, y_pred)
|
296 |
-
r2 = r2_score(y_test, y_pred)
|
297 |
-
|
298 |
-
# Step 9: Visualization of Predictions (Line Plot)
|
299 |
-
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
|
300 |
-
st.session_state.model_metrics = (mse, r2)
|
301 |
-
|
302 |
-
# Show results
|
303 |
-
st.success(f"Best Parameters: {grid_search.best_params_}")
|
304 |
-
st.success(f"Mean Squared Error: {mse:.2f}")
|
305 |
-
st.success(f"R^2 Score: {r2:.2f}")
|
306 |
-
|
307 |
-
# Display hyperparameter tuned model plot if available
|
308 |
-
if st.session_state.model_plot is not None:
|
309 |
-
y_test, y_pred = st.session_state.model_plot
|
310 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
311 |
-
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
|
312 |
-
ax.plot(y_pred, label="Predicted Values", color="orange")
|
313 |
-
ax.set_title(f'{hyperparam_model_option}: True Values vs Predictions (Tuned)')
|
314 |
-
ax.set_xlabel('Index')
|
315 |
-
ax.set_ylabel('Values')
|
316 |
-
ax.legend()
|
317 |
-
st.pyplot(fig)
|
318 |
-
|
319 |
-
# Display metrics if available
|
320 |
-
if st.session_state.model_metrics is not None:
|
321 |
-
mse, r2 = st.session_state.model_metrics
|
322 |
-
st.success(f"Mean Squared Error: {mse:.2f}")
|
323 |
-
st.success(f"R^2 Score: {r2:.2f}")
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
# Run the app
|
328 |
-
if __name__ == "__main__":
|
329 |
main()
|
|
|
7 |
from sklearn.ensemble import RandomForestRegressor
|
8 |
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
import joblib
|
|
|
10 |
import plotly.express as px
|
11 |
import plotly.figure_factory as ff
|
12 |
|
|
|
17 |
|
18 |
with st.expander("1: Add Your Data Source"):
|
19 |
uploaded_file = st.file_uploader("Upload your CSV or Excel file", type=["csv", "xlsx", "xls"])
|
20 |
+
|
21 |
if uploaded_file is None:
|
22 |
try:
|
23 |
data = pd.read_csv('example.csv') # Load example CSV
|
|
|
45 |
except Exception as e:
|
46 |
st.error(f"An error occurred: {e}")
|
47 |
|
|
|
48 |
with st.expander("2: DataSet Preview"):
|
49 |
if uploaded_file is not None:
|
50 |
+
st.write("Data Overview")
|
51 |
+
st.dataframe(data.head())
|
52 |
+
st.write("Data Description")
|
53 |
+
st.write(data.describe())
|
54 |
+
st.write("Missing Values")
|
55 |
+
st.write(data.isnull().sum())
|
56 |
+
st.write("Data Types")
|
57 |
+
st.write(data.dtypes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
with st.expander("3: Data Cleaning"):
|
60 |
+
st.write("Data Summary Before Cleaning")
|
61 |
+
st.write(data.describe())
|
62 |
+
st.write("Missing Values Before Cleaning:")
|
63 |
+
st.write(data.isnull().sum())
|
64 |
+
|
65 |
+
if st.checkbox("Show Missing Values Heatmap"):
|
66 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
67 |
+
sns.heatmap(data.isnull(), cbar=False, cmap='viridis', ax=ax)
|
68 |
+
plt.title("Missing Values Heatmap")
|
69 |
+
st.pyplot(fig)
|
70 |
+
|
71 |
+
if st.checkbox("Remove Duplicate Rows"):
|
72 |
+
initial_shape = data.shape
|
73 |
+
data = data.drop_duplicates()
|
74 |
+
st.success(f"Removed {initial_shape[0] - data.shape[0]} duplicate rows.")
|
75 |
+
|
76 |
+
missing_strategy = st.selectbox(
|
77 |
+
"Choose a strategy for handling missing values",
|
78 |
+
options=["Drop Missing Values", "Fill with Mean", "Fill with Median", "Fill with Mode", "Do Nothing"]
|
79 |
+
)
|
80 |
+
|
81 |
+
if st.button("Apply Missing Value Strategy"):
|
82 |
+
if missing_strategy == "Drop Missing Values":
|
83 |
+
data.dropna(inplace=True)
|
84 |
+
st.success("Dropped rows with missing values.")
|
85 |
+
elif missing_strategy == "Fill with Mean":
|
86 |
+
data.fillna(data.mean(), inplace=True)
|
87 |
+
st.success("Filled missing values with the mean.")
|
88 |
+
elif missing_strategy == "Fill with Median":
|
89 |
+
data.fillna(data.median(), inplace=True)
|
90 |
+
st.success("Filled missing values with the median.")
|
91 |
+
elif missing_strategy == "Fill with Mode":
|
92 |
+
for column in data.select_dtypes(include=['object']).columns:
|
93 |
+
data[column].fillna(data[column].mode()[0], inplace=True)
|
94 |
+
st.success("Filled missing values with the mode for categorical columns.")
|
95 |
+
elif missing_strategy == "Do Nothing":
|
96 |
+
st.info("No changes made to missing values.")
|
97 |
+
|
98 |
+
st.write("Data Summary After Cleaning")
|
99 |
+
st.write(data.describe())
|
100 |
+
st.write("Missing Values After Cleaning:")
|
101 |
+
st.write(data.isnull().sum())
|
102 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
with st.expander('4: EDA'):
|
104 |
+
st.write("Correlation Matrix")
|
105 |
+
correlation_matrix = data.corr()
|
106 |
+
fig = ff.create_annotated_heatmap(
|
107 |
+
z=correlation_matrix.values,
|
108 |
+
x=list(correlation_matrix.columns),
|
109 |
+
y=list(correlation_matrix.index),
|
110 |
+
)
|
111 |
+
fig.update_layout(
|
112 |
+
title="Correlation Matrix",
|
113 |
+
xaxis_title="Features",
|
114 |
+
yaxis_title="Features",
|
115 |
+
width=700,
|
116 |
+
height=500,
|
117 |
+
)
|
118 |
+
st.plotly_chart(fig)
|
119 |
+
|
120 |
+
if st.checkbox("Show Distribution Plots for Numeric Features"):
|
121 |
+
for column in data.select_dtypes(include=[int, float]).columns:
|
122 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
123 |
+
sns.histplot(data[column], bins=30, kde=True, ax=ax)
|
124 |
+
plt.title(f'Distribution of {column}')
|
125 |
+
st.pyplot(fig)
|
126 |
+
|
127 |
+
if st.checkbox("Show Boxplots for Numeric Features"):
|
128 |
+
for column in data.select_dtypes(include=[int, float]).columns:
|
129 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
130 |
+
sns.boxplot(x=data[column], ax=ax)
|
131 |
+
plt.title(f'Boxplot of {column}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
st.pyplot(fig)
|
133 |
|
134 |
+
with st.expander("5: Feature Engineering"):
|
135 |
+
target_column = st.selectbox("Select the target variable", options=data.columns)
|
136 |
+
feature_columns = st.multiselect("Select features", options=data.columns.drop(target_column))
|
|
|
|
|
137 |
|
138 |
+
with st.expander("6: Modelling"):
|
139 |
+
if 'model_plot' not in st.session_state:
|
140 |
+
st.session_state.model_plot = None
|
141 |
+
if 'model_metrics' not in st.session_state:
|
142 |
+
st.session_state.model_metrics = None
|
143 |
|
144 |
+
model_option = st.selectbox("Select Regression Model", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
|
145 |
+
|
146 |
+
if st.button("Train Model (Without Hyperparameter Tuning)"):
|
147 |
if feature_columns:
|
148 |
+
X = data[feature_columns]
|
149 |
+
y = data[target_column]
|
150 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
151 |
+
|
152 |
+
if model_option == "Linear Regression":
|
153 |
+
model = LinearRegression()
|
154 |
+
elif model_option == "Random Forest Regression":
|
155 |
+
model = RandomForestRegressor(random_state=42)
|
156 |
+
elif model_option == "Lasso Regression":
|
157 |
+
model = Lasso()
|
158 |
+
|
159 |
+
model.fit(X_train, y_train)
|
160 |
+
|
161 |
+
model_name = st.text_input('Enter model name', 'my_model')
|
162 |
+
model_file_path = f'{model_name}.pkl'
|
163 |
+
joblib.dump(model, model_file_path)
|
164 |
+
st.success("Model saved successfully!")
|
165 |
+
|
166 |
+
with open(model_file_path, "rb") as f:
|
167 |
+
st.download_button(
|
168 |
+
label="Download Model",
|
169 |
+
data=f,
|
170 |
+
file_name=model_file_path,
|
171 |
+
mime="application/octet-stream"
|
172 |
+
)
|
173 |
+
|
174 |
+
y_pred = model.predict(X_test)
|
175 |
+
mse = mean_squared_error(y_test, y_pred)
|
176 |
+
r2 = r2_score(y_test, y_pred)
|
177 |
+
|
178 |
+
st.session_state.model_plot = (y_test.reset_index(drop=True), y_pred)
|
179 |
+
st.session_state.model_metrics = (mse, r2)
|
180 |
+
|
181 |
+
st.success(f"Mean Squared Error: {mse:.2f}")
|
182 |
+
st.success(f"R^2 Score: {r2:.2f}")
|
183 |
+
|
184 |
+
if st.session_state.model_plot is not None:
|
185 |
+
y_test, y_pred = st.session_state.model_plot
|
186 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
187 |
+
ax.plot(y_test, label="True Values", color="blue", linestyle="--")
|
188 |
+
ax.plot(y_pred, label="Predicted Values", color="orange")
|
189 |
+
ax.set_title(f'{model_option}: True Values vs Predictions')
|
190 |
+
ax.set_xlabel('Index')
|
191 |
+
ax.set_ylabel('Values')
|
192 |
+
ax.legend()
|
193 |
+
st.pyplot(fig)
|
194 |
+
|
195 |
+
if st.session_state.model_metrics is not None:
|
196 |
+
mse, r2 = st.session_state.model_metrics
|
197 |
+
st.success(f"Mean Squared Error: {mse:.2f}")
|
198 |
+
st.success(f"R^2 Score: {r2:.2f}")
|
199 |
+
|
200 |
+
with st.expander("7: HyperParameter"):
|
201 |
+
if feature_columns:
|
202 |
+
hyperparam_model_option = st.selectbox("Select Model for Hyperparameter Tuning", options=["Linear Regression", "Random Forest Regression", "Lasso Regression"])
|
203 |
+
|
204 |
+
if hyperparam_model_option == "Linear Regression":
|
205 |
+
param_grid = {'fit_intercept': [True, False]}
|
206 |
+
elif hyperparam_model_option == "Random Forest Regression":
|
207 |
+
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10]}
|
208 |
+
elif hyperparam_model_option == "Lasso Regression":
|
209 |
+
param_grid = {'alpha': [0.01, 0.1, 1, 10], 'max_iter': [1000, 5000, 10000]}
|
210 |
+
|
211 |
+
if st.button("Train Model with Hyperparameter Tuning"):
|
212 |
+
X = data[feature_columns]
|
213 |
+
y = data[target_column]
|
214 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
215 |
|
216 |
if hyperparam_model_option == "Linear Regression":
|
217 |
+
model = LinearRegression()
|
218 |
+
grid_search = GridSearchCV(model, param_grid, cv=5)
|
219 |
elif hyperparam_model_option == "Random Forest Regression":
|
220 |
+
model = RandomForestRegressor(random_state=42)
|
221 |
+
grid_search = GridSearchCV(model, param_grid, cv=5)
|
222 |
elif hyperparam_model_option == "Lasso Regression":
|
223 |
+
model = Lasso()
|
224 |
+
grid_search = GridSearchCV(model, param_grid, cv=5)
|
225 |
+
|
226 |
+
grid_search.fit(X_train, y_train)
|
227 |
+
best_params = grid_search.best_params_
|
228 |
+
|
229 |
+
st.success(f"Best Hyperparameters: {best_params}")
|
230 |
+
|
231 |
+
# Run the application
|
232 |
+
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
main()
|