destiratnakomala commited on
Commit
f0c96d6
·
verified ·
1 Parent(s): 65ab32b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from transformers import pipeline
4
+ get_completion = pipeline("ner", model="dslim/bert-base-NER")
5
+
6
+ def merge_tokens(tokens):
7
+ merged_tokens = []
8
+ for token in tokens:
9
+ if (merged_tokens and token['word'].startswith('##')) or (merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:])):
10
+ last_token = merged_tokens[-1]
11
+ last_token['word'] += token['word'].replace('##', '')
12
+ last_token['end'] = token['end']
13
+ last_token['score'] = (last_token['score'] + token['score']) / 2
14
+ merged_tokens[-1] = last_token
15
+
16
+ else:
17
+ # Otherwise, add the token to the list
18
+ merged_tokens.append(token)
19
+
20
+ return merged_tokens
21
+
22
+ def ner_merged(input):
23
+ output = get_completion(input)
24
+ merged_tokens = merge_tokens(output)
25
+ return {"text": input, "entities": merged_tokens}
26
+
27
+ demo = gr.Interface(fn=ner_merged,
28
+ # inputs=[gr.Textbox(label="Text to find entities", lines=2)],
29
+ # outputs=[gr.HighlightedText(label="Text with entities")],
30
+ # title="NER with dslim/bert-base-NER",
31
+ # description="Find entities using the `dslim/bert-base-NER` model under the hood!",
32
+ inputs=[gr.Textbox(label="Type or paste text to find Named Entities or even select and submit below examples", lines=2)],
33
+ outputs=[gr.HighlightedText(label="Text with Named Entities identified")],
34
+ title="Named Entity Recognition test and demo app by Srinivas.V ",
35
+ description="Find entities",
36
+ allow_flagging="never",
37
+ examples=["My name is Srinivas and I live in Dubai, United Arab Emirates. I love DeepLearningAI",
38
+ "I am a Data Scientist and I am a citizen of Bharat"])
39
+ demo.launch()