Spaces:
Runtime error
Runtime error
File size: 6,279 Bytes
ac059f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from pathlib import Path
from typing import Tuple
import yaml
import numpy as np
import audiotools as at
import argbind
import gradio as gr
from vampnet.interface import Interface
conf = yaml.safe_load(Path("conf/interface-jazzpop-exp.yml").read_text())
Interface = argbind.bind(Interface)
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
with argbind.scope(conf):
interface = Interface()
loader = AudioLoader()
dataset = at.data.datasets.AudioDataset(
loader,
sample_rate=interface.codec.sample_rate,
duration=interface.coarse.chunk_size_s,
n_examples=5000,
without_replacement=True,
)
def load_audio(file):
print(file)
filepath = file.name
sig = at.AudioSignal.salient_excerpt(
filepath,
duration=interface.coarse.chunk_size_s
)
sig = interface.preprocess(sig)
audio = sig.samples.numpy()[0]
sr = sig.sample_rate
return sr, audio.T
def load_random_audio():
index = np.random.randint(0, len(dataset))
sig = dataset[index]["signal"]
sig = interface.preprocess(sig)
audio = sig.samples.numpy()[0]
sr = sig.sample_rate
return sr, audio.T
def mask_audio(
prefix_s, suffix_s, rand_mask_intensity,
mask_periodic_amt, beat_unmask_dur,
mask_dwn_chk, dwn_factor,
mask_up_chk, up_factor
):
pass
def vamp(
input_audio, prefix_s, suffix_s, rand_mask_intensity,
mask_periodic_amt, beat_unmask_dur,
mask_dwn_chk, dwn_factor,
mask_up_chk, up_factor
):
print(input_audio)
with gr.Blocks() as demo:
gr.Markdown('# Vampnet')
with gr.Row():
# input audio
with gr.Column():
gr.Markdown("## Input Audio")
manual_audio_upload = gr.File(
label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
file_types=["audio"]
)
load_random_audio_button = gr.Button("or load random audio")
input_audio = gr.Audio(
label="input audio",
interactive=False,
)
input_audio_viz = gr.HTML(
label="input audio",
)
# connect widgets
load_random_audio_button.click(
fn=load_random_audio,
inputs=[],
outputs=[ input_audio]
)
manual_audio_upload.change(
fn=load_audio,
inputs=[manual_audio_upload],
outputs=[ input_audio]
)
# mask settings
with gr.Column():
gr.Markdown("## Mask Settings")
prefix_s = gr.Slider(
label="prefix length (seconds)",
minimum=0.0,
maximum=10.0,
value=0.0
)
suffix_s = gr.Slider(
label="suffix length (seconds)",
minimum=0.0,
maximum=10.0,
value=0.0
)
rand_mask_intensity = gr.Slider(
label="random mask intensity (lower means more freedom)",
minimum=0.0,
maximum=1.0,
value=1.0
)
mask_periodic_amt = gr.Slider(
label="periodic unmasking factor (higher means more freedom)",
minimum=0,
maximum=32,
step=1,
value=2,
)
compute_mask_button = gr.Button("compute mask")
mask_output = gr.Audio(
label="masked audio",
interactive=False,
visible=False
)
mask_output_viz = gr.Video(
label="masked audio",
interactive=False
)
with gr.Column():
gr.Markdown("## Beat Unmasking")
with gr.Accordion(label="beat unmask"):
beat_unmask_dur = gr.Slider(
label="duration",
minimum=0.0,
maximum=3.0,
value=0.1
)
with gr.Accordion("downbeat settings"):
mask_dwn_chk = gr.Checkbox(
label="unmask downbeats",
value=True
)
dwn_factor = gr.Slider(
label="downbeat downsample factor (unmask every Nth downbeat)",
value=1,
minimum=1,
maximum=16,
step=1
)
with gr.Accordion("upbeat settings"):
mask_up_chk = gr.Checkbox(
label="unmask upbeats",
value=True
)
up_factor = gr.Slider(
label="upbeat downsample factor (unmask every Nth upbeat)",
value=1,
minimum=1,
maximum=16,
step=1
)
# process and output
with gr.Row():
with gr.Column():
vamp_button = gr.Button("vamp")
output_audio = gr.Audio(
label="output audio",
interactive=False,
visible=False
)
output_audio_viz = gr.Video(
label="output audio",
interactive=False
)
# connect widgets
compute_mask_button.click(
fn=mask_audio,
inputs=[
prefix_s, suffix_s, rand_mask_intensity,
mask_periodic_amt, beat_unmask_dur,
mask_dwn_chk, dwn_factor,
mask_up_chk, up_factor
],
outputs=[mask_output, mask_output_viz]
)
# connect widgets
vamp_button.click(
fn=vamp,
inputs=[input_audio,
prefix_s, suffix_s, rand_mask_intensity,
mask_periodic_amt, beat_unmask_dur,
mask_dwn_chk, dwn_factor,
mask_up_chk, up_factor
],
outputs=[output_audio, output_audio_viz]
)
demo.launch(share=True) |