File size: 7,629 Bytes
ac059f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3815be3
 
ac059f4
3815be3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac059f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3815be3
 
 
 
 
 
 
 
 
 
 
ac059f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3815be3
 
ac059f4
3815be3
ac059f4
 
 
3815be3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from pathlib import Path
from typing import Tuple
import yaml

import numpy as np
import audiotools as at
import argbind

import gradio as gr
from vampnet.interface import Interface

conf = yaml.safe_load(Path("conf/interface-jazzpop-exp.yml").read_text())

Interface = argbind.bind(Interface)
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
with argbind.scope(conf):
    interface = Interface()
    loader = AudioLoader()

dataset = at.data.datasets.AudioDataset(
    loader,
    sample_rate=interface.codec.sample_rate,
    duration=interface.coarse.chunk_size_s,
    n_examples=5000,
    without_replacement=True,
)


def load_audio(file):
    print(file)
    filepath = file.name
    sig = at.AudioSignal.salient_excerpt(
        filepath, 
        duration=interface.coarse.chunk_size_s
    )
    sig = interface.preprocess(sig)

    audio = sig.samples.numpy()[0]
    sr = sig.sample_rate
    return sr, audio.T

def load_random_audio():
    index = np.random.randint(0, len(dataset))
    sig = dataset[index]["signal"]
    sig = interface.preprocess(sig)

    audio = sig.samples.numpy()[0]
    sr = sig.sample_rate
    return sr, audio.T


def vamp(
    input_audio, prefix_s, suffix_s, rand_mask_intensity,
    mask_periodic_amt, beat_unmask_dur,
    mask_dwn_chk, dwn_factor,
    mask_up_chk, up_factor, 
    num_vamps, mode
):
    try:
        print(input_audio)

        sig = at.AudioSignal(
            input_audio[1], 
            sample_rate=input_audio[0]
        )
        
        if beat_unmask_dur > 0.0:
            beat_mask = interface.make_beat_mask(
                sig, 
                before_beat_s=0.01,
                after_beat_s=beat_unmask_dur,
                mask_downbeats=mask_dwn_chk,
                mask_upbeats=mask_up_chk,
                downbeat_downsample_factor=dwn_factor, 
                beat_downsample_factor=up_factor,
                dropout=0.7, 
                invert=True
            )
        else:
            beat_mask = None

        if mode == "standard": 
            zv = interface.coarse_vamp_v2(
                sig, 
                prefix_dur_s=prefix_s,
                suffix_dur_s=suffix_s,
                num_vamps=num_vamps,
                downsample_factor=mask_periodic_amt,
                intensity=rand_mask_intensity,
                ext_mask=beat_mask
            )
        elif mode == "loop":
            zv = interface.loop(
                zv, 
                prefix_dur_s=prefix_s, 
                suffix_dur_s=suffix_s, 
                num_loops=num_vamps,
                downsample_factor=mask_periodic_amt,
                intensity=rand_mask_intensity,
                ext_mask=beat_mask
            )

        zv = interface.coarse_to_fine(zv)
        sig = interface.to_signal(zv)
        return sig.sample_rate, sig.samples[0].T
    except Exception as e:
        raise gr.Error(f"failed with error: {e}")
        


with gr.Blocks() as demo:

    gr.Markdown('# Vampnet')
    
    with gr.Row():
        # input audio
        with gr.Column():
            gr.Markdown("## Input Audio")

            manual_audio_upload = gr.File(
                label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
                file_types=["audio"]
            )
            load_random_audio_button = gr.Button("or load random audio")

            input_audio = gr.Audio(
                label="input audio",
                interactive=False, 
            )
            input_audio_viz = gr.HTML(
                label="input audio",
            )

            # connect widgets
            load_random_audio_button.click(
                fn=load_random_audio,
                inputs=[],
                outputs=[ input_audio]
            )

            manual_audio_upload.change(
                fn=load_audio,
                inputs=[manual_audio_upload],
                outputs=[ input_audio]
            )
                

        # mask settings
        with gr.Column():
            gr.Markdown("## Mask Settings")
            prefix_s = gr.Slider(
                label="prefix length (seconds)",
                minimum=0.0,
                maximum=10.0,
                value=0.0
            )
            suffix_s = gr.Slider(
                label="suffix length (seconds)",
                minimum=0.0,
                maximum=10.0,
                value=0.0
            )

            rand_mask_intensity = gr.Slider(
                label="random mask intensity (lower means more freedom)",
                minimum=0.0,
                maximum=1.0,
                value=1.0
            )

            mask_periodic_amt = gr.Slider(
                label="periodic unmasking factor (higher means more freedom)",
                minimum=0,
                maximum=32, 
                step=1,
                value=2, 
            )
            compute_mask_button = gr.Button("compute mask")
            mask_output = gr.Audio(
                label="masked audio",
                interactive=False,
                visible=False
            )
            mask_output_viz = gr.Video(
                label="masked audio",
                interactive=False
            )
        
        with gr.Column():
            gr.Markdown("## Beat Unmasking")
            with gr.Accordion(label="beat unmask"):
                beat_unmask_dur = gr.Slider(
                    label="duration", 
                    minimum=0.0,
                    maximum=3.0,
                    value=0.1
                )
                with gr.Accordion("downbeat settings"):
                    mask_dwn_chk = gr.Checkbox(
                        label="unmask downbeats",
                        value=True
                    )
                    dwn_factor = gr.Slider(
                        label="downbeat downsample factor (unmask every Nth downbeat)",
                        value=1, 
                        minimum=1,
                        maximum=16, 
                        step=1
                    )
                with gr.Accordion("upbeat settings"):
                    mask_up_chk = gr.Checkbox(
                        label="unmask upbeats",
                        value=True
                    )
                    up_factor = gr.Slider(
                        label="upbeat downsample factor (unmask every Nth upbeat)",
                        value=1,
                        minimum=1,
                        maximum=16,
                        step=1
                    )
            
    # process and output
    with gr.Row():
        with gr.Column():
            gr.Markdown("**NOTE**: for loop mode, both prefix and suffix must be greater than 0.")
            mode = gr.Radio(
                label="mode",
                choices=["standard", "loop"],
                value="standard"
            )
            num_vamps = gr.Number(
                label="number of vamps",
                value=1,
                precision=0
            )
            vamp_button = gr.Button("vamp")

            output_audio = gr.Audio(
                label="output audio",
                interactive=False,
                visible=False
            )

    # connect widgets
    vamp_button.click(
        fn=vamp,
        inputs=[input_audio,
            prefix_s, suffix_s, rand_mask_intensity, 
            mask_periodic_amt, beat_unmask_dur, 
            mask_dwn_chk, dwn_factor, 
            mask_up_chk, up_factor, 
            num_vamps, mode
        ],
        outputs=[output_audio]
    )


demo.launch(share=True, server_name="0.0.0.0")