import reflex as rx p2 = ''' # Steps ### Dataset Selection We begin with the [layoric/labeled-multiple-choice-explained](https://huggingface.co/datasets/layoric/labeled-multiple-choice-explained) dataset, which includes reasoning provided by GPT-3.5-turbo. reasoning explanations serve as a starting point but may differ from Mistral's reasoning style. 0. *[00-poe-generate-mistral-reasoning.ipynb](https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/00-poe-generate-mistral-reasoning.ipynb)*: To align with Mistral, we need to create a refined dataset: [derek-thomas/labeled-multiple-choice-explained-mistral-reasoning](https://huggingface.co/datasets/derek-thomas/labeled-multiple-choice-explained-mistral-reasoning). 1. *[01-poe-dataset-creation.ipynb](https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/01-poe-dataset-creation.ipynb)*: Then we need to create our prompt experiments. 2. *[02-autotrain.ipynb](https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/02-autotrain.ipynb)*: We generate autotrain jobs on spaces to train our models. 3. *[03-poe-token-count-exploration.ipynb](https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/03-poe-token-count-exploration.ipynb)*: We do some quick analysis so we can optimize our TGI settings. 4. *[04-poe-eval.ipynb](https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/04-poe-eval.ipynb)*: We finally evaluate our trained models. **The flowchart is _Clickable_** ''' def mermaid_svg(): with open('assets/prompt-order-experiment.svg', 'r') as file: svg_content = file.read() return rx.html( f'