File size: 2,056 Bytes
9990990
 
 
 
 
e4449d4
9990990
e4449d4
7d28d38
 
 
 
9990990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272ccb0
 
 
9990990
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import reflex as rx

p2 = '''
# Steps 
### Dataset Selection
We begin with the <a href="https://huggingface.co/datasets/layoric/labeled-multiple-choice-explained" target="_blank">layoric/labeled-multiple-choice-explained</a> dataset, which includes reasoning provided by GPT-3.5-turbo. reasoning explanations serve as a starting point but may differ from Falcon's reasoning style.

0. <i><a href="https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/00-poe-generate-falcon-reasoning.ipynb" target="_blank">00-poe-generate-falcon-reasoning.ipynb</a></i>: To align with falcon, we need to create a refined dataset: <a href="https://huggingface.co/datasets/derek-thomas/labeled-multiple-choice-explained-falcon-reasoning" target="_blank">derek-thomas/labeled-multiple-choice-explained-falcon-reasoning</a>.
1. <i><a href="https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/01-poe-dataset-creation.ipynb" target="_blank">01-poe-dataset-creation.ipynb</a></i>: Then we need to create our prompt experiments.
2. <i><a href="https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/02-autotrain.ipynb" target="_blank">02-autotrain.ipynb</a></i>: We generate autotrain jobs on spaces to train our models.
3. <i><a href="https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/03-poe-token-count-exploration.ipynb" target="_blank">03-poe-token-count-exploration.ipynb</a></i>: We do some quick analysis so we can optimize our TGI settings.
4. <i><a href="https://huggingface.co/derek-thomas/prompt-order-experiment/blob/main/04-poe-eval.ipynb" target="_blank">04-poe-eval.ipynb</a></i>: We finally evaluate our trained models.

**The flowchart is _Clickable_**
'''


def mermaid_svg():
    with open('assets/prompt-order-experiment.svg', 'r') as file:
        svg_content = file.read()

    return rx.html(
            f'<div style="width: 300%; height: auto;">{svg_content}</div>'
            )


def page():
    return rx.vstack(
            rx.markdown(p2),
            mermaid_svg(),
            )