Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Delete metric_depth
Browse files- metric_depth/README.md +0 -55
- metric_depth/assets/compare_zoedepth.png +0 -3
- metric_depth/dataset/hypersim.py +0 -74
- metric_depth/dataset/kitti.py +0 -57
- metric_depth/dataset/splits/hypersim/train.txt +0 -3
- metric_depth/dataset/splits/hypersim/val.txt +0 -0
- metric_depth/dataset/splits/kitti/val.txt +0 -0
- metric_depth/dataset/splits/vkitti2/train.txt +0 -0
- metric_depth/dataset/transform.py +0 -277
- metric_depth/dataset/vkitti2.py +0 -54
- metric_depth/depth_anything_v2/dinov2.py +0 -415
- metric_depth/depth_anything_v2/dinov2_layers/__init__.py +0 -11
- metric_depth/depth_anything_v2/dinov2_layers/attention.py +0 -83
- metric_depth/depth_anything_v2/dinov2_layers/block.py +0 -252
- metric_depth/depth_anything_v2/dinov2_layers/drop_path.py +0 -35
- metric_depth/depth_anything_v2/dinov2_layers/layer_scale.py +0 -28
- metric_depth/depth_anything_v2/dinov2_layers/mlp.py +0 -41
- metric_depth/depth_anything_v2/dinov2_layers/patch_embed.py +0 -89
- metric_depth/depth_anything_v2/dinov2_layers/swiglu_ffn.py +0 -63
- metric_depth/depth_anything_v2/dpt.py +0 -222
- metric_depth/depth_anything_v2/util/blocks.py +0 -148
- metric_depth/depth_anything_v2/util/transform.py +0 -158
- metric_depth/depth_to_pointcloud.py +0 -83
- metric_depth/dist_train.sh +0 -26
- metric_depth/requirements.txt +0 -5
- metric_depth/run.py +0 -81
- metric_depth/train.py +0 -212
- metric_depth/util/dist_helper.py +0 -41
- metric_depth/util/loss.py +0 -16
- metric_depth/util/metric.py +0 -26
- metric_depth/util/utils.py +0 -26
    	
        metric_depth/README.md
    DELETED
    
    | @@ -1,55 +0,0 @@ | |
| 1 | 
            -
            # Depth Anything V2 for Metric Depth Estimation
         | 
| 2 | 
            -
             | 
| 3 | 
            -
            
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            We here provide a simple codebase to fine-tune our Depth Anything V2 pre-trained encoder for metric depth estimation. Built on our powerful encoder, we use a simple DPT head to regress the depth. We fine-tune our pre-trained encoder on synthetic Hypersim / Virtual KITTI datasets for indoor / outdoor metric depth estimation, respectively.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
            ## Usage
         | 
| 9 | 
            -
             | 
| 10 | 
            -
            ### Inference
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            Please first download our pre-trained metric depth models and put them under the `checkpoints` directory: 
         | 
| 13 | 
            -
            - [Indoor model from Hypersim](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Hypersim-Large/resolve/main/depth_anything_v2_metric_hypersim_vitl.pth?download=true)
         | 
| 14 | 
            -
            - [Outdoor model from Virtual KITTI 2](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-VKITTI-Large/resolve/main/depth_anything_v2_metric_vkitti_vitl.pth?download=true)
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            ```bash
         | 
| 17 | 
            -
            # indoor scenes
         | 
| 18 | 
            -
            python run.py \
         | 
| 19 | 
            -
              --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
         | 
| 20 | 
            -
              --max-depth 20 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
         | 
| 21 | 
            -
             | 
| 22 | 
            -
            # outdoor scenes
         | 
| 23 | 
            -
            python run.py \
         | 
| 24 | 
            -
              --encoder vitl --load-from checkpoints/depth_anything_v2_metric_vkitti_vitl.pth \
         | 
| 25 | 
            -
              --max-depth 80 --img-path <path> --outdir <outdir> [--input-size <size>] [--save-numpy]
         | 
| 26 | 
            -
            ```
         | 
| 27 | 
            -
             | 
| 28 | 
            -
            You can also project 2D images to point clouds:
         | 
| 29 | 
            -
            ```bash
         | 
| 30 | 
            -
            python depth_to_pointcloud.py \
         | 
| 31 | 
            -
              --encoder vitl --load-from checkpoints/depth_anything_v2_metric_hypersim_vitl.pth \
         | 
| 32 | 
            -
              --max-depth 20 --img-path <path> --outdir <outdir>
         | 
| 33 | 
            -
            ```
         | 
| 34 | 
            -
             | 
| 35 | 
            -
            ### Reproduce training
         | 
| 36 | 
            -
             | 
| 37 | 
            -
            Please first prepare the [Hypersim](https://github.com/apple/ml-hypersim) and [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/) datasets. Then:
         | 
| 38 | 
            -
             | 
| 39 | 
            -
            ```bash
         | 
| 40 | 
            -
            bash dist_train.sh
         | 
| 41 | 
            -
            ```
         | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
            ## Citation
         | 
| 45 | 
            -
             | 
| 46 | 
            -
            If you find this project useful, please consider citing:
         | 
| 47 | 
            -
             | 
| 48 | 
            -
            ```bibtex
         | 
| 49 | 
            -
            @article{depth_anything_v2,
         | 
| 50 | 
            -
              title={Depth Anything V2},
         | 
| 51 | 
            -
              author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
         | 
| 52 | 
            -
              journal={arXiv:2406.09414},
         | 
| 53 | 
            -
              year={2024}
         | 
| 54 | 
            -
            }
         | 
| 55 | 
            -
            ```
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/assets/compare_zoedepth.png
    DELETED
    
    | Git LFS Details
 | 
    	
        metric_depth/dataset/hypersim.py
    DELETED
    
    | @@ -1,74 +0,0 @@ | |
| 1 | 
            -
            import cv2
         | 
| 2 | 
            -
            import h5py
         | 
| 3 | 
            -
            import numpy as np
         | 
| 4 | 
            -
            import torch
         | 
| 5 | 
            -
            from torch.utils.data import Dataset
         | 
| 6 | 
            -
            from torchvision.transforms import Compose
         | 
| 7 | 
            -
             | 
| 8 | 
            -
            from dataset.transform import Resize, NormalizeImage, PrepareForNet, Crop
         | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
            def hypersim_distance_to_depth(npyDistance):
         | 
| 12 | 
            -
                intWidth, intHeight, fltFocal = 1024, 768, 886.81
         | 
| 13 | 
            -
             | 
| 14 | 
            -
                npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape(
         | 
| 15 | 
            -
                    1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None]
         | 
| 16 | 
            -
                npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5,
         | 
| 17 | 
            -
                                             intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None]
         | 
| 18 | 
            -
                npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32)
         | 
| 19 | 
            -
                npyImageplane = np.concatenate(
         | 
| 20 | 
            -
                    [npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2)
         | 
| 21 | 
            -
             | 
| 22 | 
            -
                npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal
         | 
| 23 | 
            -
                return npyDepth
         | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
            class Hypersim(Dataset):
         | 
| 27 | 
            -
                def __init__(self, filelist_path, mode, size=(518, 518)):
         | 
| 28 | 
            -
                    
         | 
| 29 | 
            -
                    self.mode = mode
         | 
| 30 | 
            -
                    self.size = size
         | 
| 31 | 
            -
                    
         | 
| 32 | 
            -
                    with open(filelist_path, 'r') as f:
         | 
| 33 | 
            -
                        self.filelist = f.read().splitlines()
         | 
| 34 | 
            -
                    
         | 
| 35 | 
            -
                    net_w, net_h = size
         | 
| 36 | 
            -
                    self.transform = Compose([
         | 
| 37 | 
            -
                        Resize(
         | 
| 38 | 
            -
                            width=net_w,
         | 
| 39 | 
            -
                            height=net_h,
         | 
| 40 | 
            -
                            resize_target=True if mode == 'train' else False,
         | 
| 41 | 
            -
                            keep_aspect_ratio=True,
         | 
| 42 | 
            -
                            ensure_multiple_of=14,
         | 
| 43 | 
            -
                            resize_method='lower_bound',
         | 
| 44 | 
            -
                            image_interpolation_method=cv2.INTER_CUBIC,
         | 
| 45 | 
            -
                        ),
         | 
| 46 | 
            -
                        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
         | 
| 47 | 
            -
                        PrepareForNet(),
         | 
| 48 | 
            -
                    ] + ([Crop(size[0])] if self.mode == 'train' else []))
         | 
| 49 | 
            -
                    
         | 
| 50 | 
            -
                def __getitem__(self, item):
         | 
| 51 | 
            -
                    img_path = self.filelist[item].split(' ')[0]
         | 
| 52 | 
            -
                    depth_path = self.filelist[item].split(' ')[1]
         | 
| 53 | 
            -
                    
         | 
| 54 | 
            -
                    image = cv2.imread(img_path)
         | 
| 55 | 
            -
                    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
         | 
| 56 | 
            -
                    
         | 
| 57 | 
            -
                    depth_fd = h5py.File(depth_path, "r")
         | 
| 58 | 
            -
                    distance_meters = np.array(depth_fd['dataset'])
         | 
| 59 | 
            -
                    depth = hypersim_distance_to_depth(distance_meters)
         | 
| 60 | 
            -
                    
         | 
| 61 | 
            -
                    sample = self.transform({'image': image, 'depth': depth})
         | 
| 62 | 
            -
             | 
| 63 | 
            -
                    sample['image'] = torch.from_numpy(sample['image'])
         | 
| 64 | 
            -
                    sample['depth'] = torch.from_numpy(sample['depth'])
         | 
| 65 | 
            -
                    
         | 
| 66 | 
            -
                    sample['valid_mask'] = (torch.isnan(sample['depth']) == 0)
         | 
| 67 | 
            -
                    sample['depth'][sample['valid_mask'] == 0] = 0
         | 
| 68 | 
            -
                    
         | 
| 69 | 
            -
                    sample['image_path'] = self.filelist[item].split(' ')[0]
         | 
| 70 | 
            -
                    
         | 
| 71 | 
            -
                    return sample
         | 
| 72 | 
            -
             | 
| 73 | 
            -
                def __len__(self):
         | 
| 74 | 
            -
                    return len(self.filelist)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/dataset/kitti.py
    DELETED
    
    | @@ -1,57 +0,0 @@ | |
| 1 | 
            -
            import cv2
         | 
| 2 | 
            -
            import torch
         | 
| 3 | 
            -
            from torch.utils.data import Dataset
         | 
| 4 | 
            -
            from torchvision.transforms import Compose
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            from dataset.transform import Resize, NormalizeImage, PrepareForNet
         | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
            class KITTI(Dataset):
         | 
| 10 | 
            -
                def __init__(self, filelist_path, mode, size=(518, 518)):
         | 
| 11 | 
            -
                    if mode != 'val':
         | 
| 12 | 
            -
                        raise NotImplementedError
         | 
| 13 | 
            -
                    
         | 
| 14 | 
            -
                    self.mode = mode
         | 
| 15 | 
            -
                    self.size = size
         | 
| 16 | 
            -
                    
         | 
| 17 | 
            -
                    with open(filelist_path, 'r') as f:
         | 
| 18 | 
            -
                        self.filelist = f.read().splitlines()
         | 
| 19 | 
            -
                    
         | 
| 20 | 
            -
                    net_w, net_h = size
         | 
| 21 | 
            -
                    self.transform = Compose([
         | 
| 22 | 
            -
                        Resize(
         | 
| 23 | 
            -
                            width=net_w,
         | 
| 24 | 
            -
                            height=net_h,
         | 
| 25 | 
            -
                            resize_target=True if mode == 'train' else False,
         | 
| 26 | 
            -
                            keep_aspect_ratio=True,
         | 
| 27 | 
            -
                            ensure_multiple_of=14,
         | 
| 28 | 
            -
                            resize_method='lower_bound',
         | 
| 29 | 
            -
                            image_interpolation_method=cv2.INTER_CUBIC,
         | 
| 30 | 
            -
                        ),
         | 
| 31 | 
            -
                        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
         | 
| 32 | 
            -
                        PrepareForNet(),
         | 
| 33 | 
            -
                    ])
         | 
| 34 | 
            -
                
         | 
| 35 | 
            -
                def __getitem__(self, item):
         | 
| 36 | 
            -
                    img_path = self.filelist[item].split(' ')[0]
         | 
| 37 | 
            -
                    depth_path = self.filelist[item].split(' ')[1]
         | 
| 38 | 
            -
                    
         | 
| 39 | 
            -
                    image = cv2.imread(img_path)
         | 
| 40 | 
            -
                    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
         | 
| 41 | 
            -
                    
         | 
| 42 | 
            -
                    depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED).astype('float32')
         | 
| 43 | 
            -
                    
         | 
| 44 | 
            -
                    sample = self.transform({'image': image, 'depth': depth})
         | 
| 45 | 
            -
                    
         | 
| 46 | 
            -
                    sample['image'] = torch.from_numpy(sample['image'])
         | 
| 47 | 
            -
                    sample['depth'] = torch.from_numpy(sample['depth'])
         | 
| 48 | 
            -
                    sample['depth'] = sample['depth'] / 256.0  # convert in meters
         | 
| 49 | 
            -
                    
         | 
| 50 | 
            -
                    sample['valid_mask'] = sample['depth'] > 0
         | 
| 51 | 
            -
                    
         | 
| 52 | 
            -
                    sample['image_path'] = self.filelist[item].split(' ')[0]
         | 
| 53 | 
            -
                    
         | 
| 54 | 
            -
                    return sample
         | 
| 55 | 
            -
             | 
| 56 | 
            -
                def __len__(self):
         | 
| 57 | 
            -
                    return len(self.filelist)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/dataset/splits/hypersim/train.txt
    DELETED
    
    | @@ -1,3 +0,0 @@ | |
| 1 | 
            -
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            -
            oid sha256:47beb7c615a54d08dfa2f053787897455e845ad1b54d268194a6b431b01a04d0
         | 
| 3 | 
            -
            size 13694890
         | 
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/dataset/splits/hypersim/val.txt
    DELETED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        metric_depth/dataset/splits/kitti/val.txt
    DELETED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        metric_depth/dataset/splits/vkitti2/train.txt
    DELETED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        metric_depth/dataset/transform.py
    DELETED
    
    | @@ -1,277 +0,0 @@ | |
| 1 | 
            -
            import cv2
         | 
| 2 | 
            -
            import math
         | 
| 3 | 
            -
            import numpy as np
         | 
| 4 | 
            -
            import torch
         | 
| 5 | 
            -
            import torch.nn.functional as F
         | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
            def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
         | 
| 9 | 
            -
                """Rezise the sample to ensure the given size. Keeps aspect ratio.
         | 
| 10 | 
            -
             | 
| 11 | 
            -
                Args:
         | 
| 12 | 
            -
                    sample (dict): sample
         | 
| 13 | 
            -
                    size (tuple): image size
         | 
| 14 | 
            -
             | 
| 15 | 
            -
                Returns:
         | 
| 16 | 
            -
                    tuple: new size
         | 
| 17 | 
            -
                """
         | 
| 18 | 
            -
                shape = list(sample["disparity"].shape)
         | 
| 19 | 
            -
             | 
| 20 | 
            -
                if shape[0] >= size[0] and shape[1] >= size[1]:
         | 
| 21 | 
            -
                    return sample
         | 
| 22 | 
            -
             | 
| 23 | 
            -
                scale = [0, 0]
         | 
| 24 | 
            -
                scale[0] = size[0] / shape[0]
         | 
| 25 | 
            -
                scale[1] = size[1] / shape[1]
         | 
| 26 | 
            -
             | 
| 27 | 
            -
                scale = max(scale)
         | 
| 28 | 
            -
             | 
| 29 | 
            -
                shape[0] = math.ceil(scale * shape[0])
         | 
| 30 | 
            -
                shape[1] = math.ceil(scale * shape[1])
         | 
| 31 | 
            -
             | 
| 32 | 
            -
                # resize
         | 
| 33 | 
            -
                sample["image"] = cv2.resize(
         | 
| 34 | 
            -
                    sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
         | 
| 35 | 
            -
                )
         | 
| 36 | 
            -
             | 
| 37 | 
            -
                sample["disparity"] = cv2.resize(
         | 
| 38 | 
            -
                    sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
         | 
| 39 | 
            -
                )
         | 
| 40 | 
            -
                sample["mask"] = cv2.resize(
         | 
| 41 | 
            -
                    sample["mask"].astype(np.float32),
         | 
| 42 | 
            -
                    tuple(shape[::-1]),
         | 
| 43 | 
            -
                    interpolation=cv2.INTER_NEAREST,
         | 
| 44 | 
            -
                )
         | 
| 45 | 
            -
                sample["mask"] = sample["mask"].astype(bool)
         | 
| 46 | 
            -
             | 
| 47 | 
            -
                return tuple(shape)
         | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
            class Resize(object):
         | 
| 51 | 
            -
                """Resize sample to given size (width, height).
         | 
| 52 | 
            -
                """
         | 
| 53 | 
            -
             | 
| 54 | 
            -
                def __init__(
         | 
| 55 | 
            -
                    self,
         | 
| 56 | 
            -
                    width,
         | 
| 57 | 
            -
                    height,
         | 
| 58 | 
            -
                    resize_target=True,
         | 
| 59 | 
            -
                    keep_aspect_ratio=False,
         | 
| 60 | 
            -
                    ensure_multiple_of=1,
         | 
| 61 | 
            -
                    resize_method="lower_bound",
         | 
| 62 | 
            -
                    image_interpolation_method=cv2.INTER_AREA,
         | 
| 63 | 
            -
                ):
         | 
| 64 | 
            -
                    """Init.
         | 
| 65 | 
            -
             | 
| 66 | 
            -
                    Args:
         | 
| 67 | 
            -
                        width (int): desired output width
         | 
| 68 | 
            -
                        height (int): desired output height
         | 
| 69 | 
            -
                        resize_target (bool, optional):
         | 
| 70 | 
            -
                            True: Resize the full sample (image, mask, target).
         | 
| 71 | 
            -
                            False: Resize image only.
         | 
| 72 | 
            -
                            Defaults to True.
         | 
| 73 | 
            -
                        keep_aspect_ratio (bool, optional):
         | 
| 74 | 
            -
                            True: Keep the aspect ratio of the input sample.
         | 
| 75 | 
            -
                            Output sample might not have the given width and height, and
         | 
| 76 | 
            -
                            resize behaviour depends on the parameter 'resize_method'.
         | 
| 77 | 
            -
                            Defaults to False.
         | 
| 78 | 
            -
                        ensure_multiple_of (int, optional):
         | 
| 79 | 
            -
                            Output width and height is constrained to be multiple of this parameter.
         | 
| 80 | 
            -
                            Defaults to 1.
         | 
| 81 | 
            -
                        resize_method (str, optional):
         | 
| 82 | 
            -
                            "lower_bound": Output will be at least as large as the given size.
         | 
| 83 | 
            -
                            "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
         | 
| 84 | 
            -
                            "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
         | 
| 85 | 
            -
                            Defaults to "lower_bound".
         | 
| 86 | 
            -
                    """
         | 
| 87 | 
            -
                    self.__width = width
         | 
| 88 | 
            -
                    self.__height = height
         | 
| 89 | 
            -
             | 
| 90 | 
            -
                    self.__resize_target = resize_target
         | 
| 91 | 
            -
                    self.__keep_aspect_ratio = keep_aspect_ratio
         | 
| 92 | 
            -
                    self.__multiple_of = ensure_multiple_of
         | 
| 93 | 
            -
                    self.__resize_method = resize_method
         | 
| 94 | 
            -
                    self.__image_interpolation_method = image_interpolation_method
         | 
| 95 | 
            -
             | 
| 96 | 
            -
                def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
         | 
| 97 | 
            -
                    y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
         | 
| 98 | 
            -
             | 
| 99 | 
            -
                    if max_val is not None and y > max_val:
         | 
| 100 | 
            -
                        y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
         | 
| 101 | 
            -
             | 
| 102 | 
            -
                    if y < min_val:
         | 
| 103 | 
            -
                        y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
         | 
| 104 | 
            -
             | 
| 105 | 
            -
                    return y
         | 
| 106 | 
            -
             | 
| 107 | 
            -
                def get_size(self, width, height):
         | 
| 108 | 
            -
                    # determine new height and width
         | 
| 109 | 
            -
                    scale_height = self.__height / height
         | 
| 110 | 
            -
                    scale_width = self.__width / width
         | 
| 111 | 
            -
             | 
| 112 | 
            -
                    if self.__keep_aspect_ratio:
         | 
| 113 | 
            -
                        if self.__resize_method == "lower_bound":
         | 
| 114 | 
            -
                            # scale such that output size is lower bound
         | 
| 115 | 
            -
                            if scale_width > scale_height:
         | 
| 116 | 
            -
                                # fit width
         | 
| 117 | 
            -
                                scale_height = scale_width
         | 
| 118 | 
            -
                            else:
         | 
| 119 | 
            -
                                # fit height
         | 
| 120 | 
            -
                                scale_width = scale_height
         | 
| 121 | 
            -
                        elif self.__resize_method == "upper_bound":
         | 
| 122 | 
            -
                            # scale such that output size is upper bound
         | 
| 123 | 
            -
                            if scale_width < scale_height:
         | 
| 124 | 
            -
                                # fit width
         | 
| 125 | 
            -
                                scale_height = scale_width
         | 
| 126 | 
            -
                            else:
         | 
| 127 | 
            -
                                # fit height
         | 
| 128 | 
            -
                                scale_width = scale_height
         | 
| 129 | 
            -
                        elif self.__resize_method == "minimal":
         | 
| 130 | 
            -
                            # scale as least as possbile
         | 
| 131 | 
            -
                            if abs(1 - scale_width) < abs(1 - scale_height):
         | 
| 132 | 
            -
                                # fit width
         | 
| 133 | 
            -
                                scale_height = scale_width
         | 
| 134 | 
            -
                            else:
         | 
| 135 | 
            -
                                # fit height
         | 
| 136 | 
            -
                                scale_width = scale_height
         | 
| 137 | 
            -
                        else:
         | 
| 138 | 
            -
                            raise ValueError(
         | 
| 139 | 
            -
                                f"resize_method {self.__resize_method} not implemented"
         | 
| 140 | 
            -
                            )
         | 
| 141 | 
            -
             | 
| 142 | 
            -
                    if self.__resize_method == "lower_bound":
         | 
| 143 | 
            -
                        new_height = self.constrain_to_multiple_of(
         | 
| 144 | 
            -
                            scale_height * height, min_val=self.__height
         | 
| 145 | 
            -
                        )
         | 
| 146 | 
            -
                        new_width = self.constrain_to_multiple_of(
         | 
| 147 | 
            -
                            scale_width * width, min_val=self.__width
         | 
| 148 | 
            -
                        )
         | 
| 149 | 
            -
                    elif self.__resize_method == "upper_bound":
         | 
| 150 | 
            -
                        new_height = self.constrain_to_multiple_of(
         | 
| 151 | 
            -
                            scale_height * height, max_val=self.__height
         | 
| 152 | 
            -
                        )
         | 
| 153 | 
            -
                        new_width = self.constrain_to_multiple_of(
         | 
| 154 | 
            -
                            scale_width * width, max_val=self.__width
         | 
| 155 | 
            -
                        )
         | 
| 156 | 
            -
                    elif self.__resize_method == "minimal":
         | 
| 157 | 
            -
                        new_height = self.constrain_to_multiple_of(scale_height * height)
         | 
| 158 | 
            -
                        new_width = self.constrain_to_multiple_of(scale_width * width)
         | 
| 159 | 
            -
                    else:
         | 
| 160 | 
            -
                        raise ValueError(f"resize_method {self.__resize_method} not implemented")
         | 
| 161 | 
            -
             | 
| 162 | 
            -
                    return (new_width, new_height)
         | 
| 163 | 
            -
             | 
| 164 | 
            -
                def __call__(self, sample):
         | 
| 165 | 
            -
                    width, height = self.get_size(
         | 
| 166 | 
            -
                        sample["image"].shape[1], sample["image"].shape[0]
         | 
| 167 | 
            -
                    )
         | 
| 168 | 
            -
             | 
| 169 | 
            -
                    # resize sample
         | 
| 170 | 
            -
                    sample["image"] = cv2.resize(
         | 
| 171 | 
            -
                        sample["image"],
         | 
| 172 | 
            -
                        (width, height),
         | 
| 173 | 
            -
                        interpolation=self.__image_interpolation_method,
         | 
| 174 | 
            -
                    )
         | 
| 175 | 
            -
             | 
| 176 | 
            -
                    if self.__resize_target:
         | 
| 177 | 
            -
                        if "disparity" in sample:
         | 
| 178 | 
            -
                            sample["disparity"] = cv2.resize(
         | 
| 179 | 
            -
                                sample["disparity"],
         | 
| 180 | 
            -
                                (width, height),
         | 
| 181 | 
            -
                                interpolation=cv2.INTER_NEAREST,
         | 
| 182 | 
            -
                            )
         | 
| 183 | 
            -
             | 
| 184 | 
            -
                        if "depth" in sample:
         | 
| 185 | 
            -
                            sample["depth"] = cv2.resize(
         | 
| 186 | 
            -
                                sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
         | 
| 187 | 
            -
                            )
         | 
| 188 | 
            -
             | 
| 189 | 
            -
                        if "semseg_mask" in sample:
         | 
| 190 | 
            -
                            # sample["semseg_mask"] = cv2.resize(
         | 
| 191 | 
            -
                            #     sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
         | 
| 192 | 
            -
                            # )
         | 
| 193 | 
            -
                            sample["semseg_mask"] = F.interpolate(torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode='nearest').numpy()[0, 0]
         | 
| 194 | 
            -
                            
         | 
| 195 | 
            -
                        if "mask" in sample:
         | 
| 196 | 
            -
                            sample["mask"] = cv2.resize(
         | 
| 197 | 
            -
                                sample["mask"].astype(np.float32),
         | 
| 198 | 
            -
                                (width, height),
         | 
| 199 | 
            -
                                interpolation=cv2.INTER_NEAREST,
         | 
| 200 | 
            -
                            )
         | 
| 201 | 
            -
                            # sample["mask"] = sample["mask"].astype(bool)
         | 
| 202 | 
            -
             | 
| 203 | 
            -
                    # print(sample['image'].shape, sample['depth'].shape)
         | 
| 204 | 
            -
                    return sample
         | 
| 205 | 
            -
             | 
| 206 | 
            -
             | 
| 207 | 
            -
            class NormalizeImage(object):
         | 
| 208 | 
            -
                """Normlize image by given mean and std.
         | 
| 209 | 
            -
                """
         | 
| 210 | 
            -
             | 
| 211 | 
            -
                def __init__(self, mean, std):
         | 
| 212 | 
            -
                    self.__mean = mean
         | 
| 213 | 
            -
                    self.__std = std
         | 
| 214 | 
            -
             | 
| 215 | 
            -
                def __call__(self, sample):
         | 
| 216 | 
            -
                    sample["image"] = (sample["image"] - self.__mean) / self.__std
         | 
| 217 | 
            -
             | 
| 218 | 
            -
                    return sample
         | 
| 219 | 
            -
             | 
| 220 | 
            -
             | 
| 221 | 
            -
            class PrepareForNet(object):
         | 
| 222 | 
            -
                """Prepare sample for usage as network input.
         | 
| 223 | 
            -
                """
         | 
| 224 | 
            -
             | 
| 225 | 
            -
                def __init__(self):
         | 
| 226 | 
            -
                    pass
         | 
| 227 | 
            -
             | 
| 228 | 
            -
                def __call__(self, sample):
         | 
| 229 | 
            -
                    image = np.transpose(sample["image"], (2, 0, 1))
         | 
| 230 | 
            -
                    sample["image"] = np.ascontiguousarray(image).astype(np.float32)
         | 
| 231 | 
            -
             | 
| 232 | 
            -
                    if "mask" in sample:
         | 
| 233 | 
            -
                        sample["mask"] = sample["mask"].astype(np.float32)
         | 
| 234 | 
            -
                        sample["mask"] = np.ascontiguousarray(sample["mask"])
         | 
| 235 | 
            -
                    
         | 
| 236 | 
            -
                    if "depth" in sample:
         | 
| 237 | 
            -
                        depth = sample["depth"].astype(np.float32)
         | 
| 238 | 
            -
                        sample["depth"] = np.ascontiguousarray(depth)
         | 
| 239 | 
            -
                        
         | 
| 240 | 
            -
                    if "semseg_mask" in sample:
         | 
| 241 | 
            -
                        sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
         | 
| 242 | 
            -
                        sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
         | 
| 243 | 
            -
             | 
| 244 | 
            -
                    return sample
         | 
| 245 | 
            -
             | 
| 246 | 
            -
             | 
| 247 | 
            -
            class Crop(object):
         | 
| 248 | 
            -
                """Crop sample for batch-wise training. Image is of shape CxHxW
         | 
| 249 | 
            -
                """
         | 
| 250 | 
            -
             | 
| 251 | 
            -
                def __init__(self, size):
         | 
| 252 | 
            -
                    if isinstance(size, int):
         | 
| 253 | 
            -
                        self.size = (size, size)
         | 
| 254 | 
            -
                    else:
         | 
| 255 | 
            -
                        self.size = size
         | 
| 256 | 
            -
             | 
| 257 | 
            -
                def __call__(self, sample):
         | 
| 258 | 
            -
                    h, w = sample['image'].shape[-2:]
         | 
| 259 | 
            -
                    assert h >= self.size[0] and w >= self.size[1], 'Wrong size'
         | 
| 260 | 
            -
                    
         | 
| 261 | 
            -
                    h_start = np.random.randint(0, h - self.size[0] + 1)
         | 
| 262 | 
            -
                    w_start = np.random.randint(0, w - self.size[1] + 1)
         | 
| 263 | 
            -
                    h_end = h_start + self.size[0]
         | 
| 264 | 
            -
                    w_end = w_start + self.size[1]
         | 
| 265 | 
            -
                    
         | 
| 266 | 
            -
                    sample['image'] = sample['image'][:, h_start: h_end, w_start: w_end]
         | 
| 267 | 
            -
                    
         | 
| 268 | 
            -
                    if "depth" in sample:
         | 
| 269 | 
            -
                        sample["depth"] = sample["depth"][h_start: h_end, w_start: w_end]
         | 
| 270 | 
            -
                    
         | 
| 271 | 
            -
                    if "mask" in sample:
         | 
| 272 | 
            -
                        sample["mask"] = sample["mask"][h_start: h_end, w_start: w_end]
         | 
| 273 | 
            -
                        
         | 
| 274 | 
            -
                    if "semseg_mask" in sample:
         | 
| 275 | 
            -
                        sample["semseg_mask"] = sample["semseg_mask"][h_start: h_end, w_start: w_end]
         | 
| 276 | 
            -
                        
         | 
| 277 | 
            -
                    return sample
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/dataset/vkitti2.py
    DELETED
    
    | @@ -1,54 +0,0 @@ | |
| 1 | 
            -
            import cv2
         | 
| 2 | 
            -
            import torch
         | 
| 3 | 
            -
            from torch.utils.data import Dataset
         | 
| 4 | 
            -
            from torchvision.transforms import Compose
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            from dataset.transform import Resize, NormalizeImage, PrepareForNet, Crop
         | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
            class VKITTI2(Dataset):
         | 
| 10 | 
            -
                def __init__(self, filelist_path, mode, size=(518, 518)):
         | 
| 11 | 
            -
                    
         | 
| 12 | 
            -
                    self.mode = mode
         | 
| 13 | 
            -
                    self.size = size
         | 
| 14 | 
            -
                    
         | 
| 15 | 
            -
                    with open(filelist_path, 'r') as f:
         | 
| 16 | 
            -
                        self.filelist = f.read().splitlines()
         | 
| 17 | 
            -
                    
         | 
| 18 | 
            -
                    net_w, net_h = size
         | 
| 19 | 
            -
                    self.transform = Compose([
         | 
| 20 | 
            -
                        Resize(
         | 
| 21 | 
            -
                            width=net_w,
         | 
| 22 | 
            -
                            height=net_h,
         | 
| 23 | 
            -
                            resize_target=True if mode == 'train' else False,
         | 
| 24 | 
            -
                            keep_aspect_ratio=True,
         | 
| 25 | 
            -
                            ensure_multiple_of=14,
         | 
| 26 | 
            -
                            resize_method='lower_bound',
         | 
| 27 | 
            -
                            image_interpolation_method=cv2.INTER_CUBIC,
         | 
| 28 | 
            -
                        ),
         | 
| 29 | 
            -
                        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
         | 
| 30 | 
            -
                        PrepareForNet(),
         | 
| 31 | 
            -
                    ] + ([Crop(size[0])] if self.mode == 'train' else []))
         | 
| 32 | 
            -
                
         | 
| 33 | 
            -
                def __getitem__(self, item):
         | 
| 34 | 
            -
                    img_path = self.filelist[item].split(' ')[0]
         | 
| 35 | 
            -
                    depth_path = self.filelist[item].split(' ')[1]
         | 
| 36 | 
            -
                    
         | 
| 37 | 
            -
                    image = cv2.imread(img_path)
         | 
| 38 | 
            -
                    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
         | 
| 39 | 
            -
                    
         | 
| 40 | 
            -
                    depth = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) / 100.0  # cm to m
         | 
| 41 | 
            -
                    
         | 
| 42 | 
            -
                    sample = self.transform({'image': image, 'depth': depth})
         | 
| 43 | 
            -
             | 
| 44 | 
            -
                    sample['image'] = torch.from_numpy(sample['image'])
         | 
| 45 | 
            -
                    sample['depth'] = torch.from_numpy(sample['depth'])
         | 
| 46 | 
            -
                    
         | 
| 47 | 
            -
                    sample['valid_mask'] = (sample['depth'] <= 80)
         | 
| 48 | 
            -
                    
         | 
| 49 | 
            -
                    sample['image_path'] = self.filelist[item].split(' ')[0]
         | 
| 50 | 
            -
                    
         | 
| 51 | 
            -
                    return sample
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                def __len__(self):
         | 
| 54 | 
            -
                    return len(self.filelist)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2.py
    DELETED
    
    | @@ -1,415 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            #
         | 
| 3 | 
            -
            # This source code is licensed under the Apache License, Version 2.0
         | 
| 4 | 
            -
            # found in the LICENSE file in the root directory of this source tree.
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            # References:
         | 
| 7 | 
            -
            #   https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
         | 
| 8 | 
            -
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
         | 
| 9 | 
            -
             | 
| 10 | 
            -
            from functools import partial
         | 
| 11 | 
            -
            import math
         | 
| 12 | 
            -
            import logging
         | 
| 13 | 
            -
            from typing import Sequence, Tuple, Union, Callable
         | 
| 14 | 
            -
             | 
| 15 | 
            -
            import torch
         | 
| 16 | 
            -
            import torch.nn as nn
         | 
| 17 | 
            -
            import torch.utils.checkpoint
         | 
| 18 | 
            -
            from torch.nn.init import trunc_normal_
         | 
| 19 | 
            -
             | 
| 20 | 
            -
            from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
         | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
            logger = logging.getLogger("dinov2")
         | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
            def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
         | 
| 27 | 
            -
                if not depth_first and include_root:
         | 
| 28 | 
            -
                    fn(module=module, name=name)
         | 
| 29 | 
            -
                for child_name, child_module in module.named_children():
         | 
| 30 | 
            -
                    child_name = ".".join((name, child_name)) if name else child_name
         | 
| 31 | 
            -
                    named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
         | 
| 32 | 
            -
                if depth_first and include_root:
         | 
| 33 | 
            -
                    fn(module=module, name=name)
         | 
| 34 | 
            -
                return module
         | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
            class BlockChunk(nn.ModuleList):
         | 
| 38 | 
            -
                def forward(self, x):
         | 
| 39 | 
            -
                    for b in self:
         | 
| 40 | 
            -
                        x = b(x)
         | 
| 41 | 
            -
                    return x
         | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
            class DinoVisionTransformer(nn.Module):
         | 
| 45 | 
            -
                def __init__(
         | 
| 46 | 
            -
                    self,
         | 
| 47 | 
            -
                    img_size=224,
         | 
| 48 | 
            -
                    patch_size=16,
         | 
| 49 | 
            -
                    in_chans=3,
         | 
| 50 | 
            -
                    embed_dim=768,
         | 
| 51 | 
            -
                    depth=12,
         | 
| 52 | 
            -
                    num_heads=12,
         | 
| 53 | 
            -
                    mlp_ratio=4.0,
         | 
| 54 | 
            -
                    qkv_bias=True,
         | 
| 55 | 
            -
                    ffn_bias=True,
         | 
| 56 | 
            -
                    proj_bias=True,
         | 
| 57 | 
            -
                    drop_path_rate=0.0,
         | 
| 58 | 
            -
                    drop_path_uniform=False,
         | 
| 59 | 
            -
                    init_values=None,  # for layerscale: None or 0 => no layerscale
         | 
| 60 | 
            -
                    embed_layer=PatchEmbed,
         | 
| 61 | 
            -
                    act_layer=nn.GELU,
         | 
| 62 | 
            -
                    block_fn=Block,
         | 
| 63 | 
            -
                    ffn_layer="mlp",
         | 
| 64 | 
            -
                    block_chunks=1,
         | 
| 65 | 
            -
                    num_register_tokens=0,
         | 
| 66 | 
            -
                    interpolate_antialias=False,
         | 
| 67 | 
            -
                    interpolate_offset=0.1,
         | 
| 68 | 
            -
                ):
         | 
| 69 | 
            -
                    """
         | 
| 70 | 
            -
                    Args:
         | 
| 71 | 
            -
                        img_size (int, tuple): input image size
         | 
| 72 | 
            -
                        patch_size (int, tuple): patch size
         | 
| 73 | 
            -
                        in_chans (int): number of input channels
         | 
| 74 | 
            -
                        embed_dim (int): embedding dimension
         | 
| 75 | 
            -
                        depth (int): depth of transformer
         | 
| 76 | 
            -
                        num_heads (int): number of attention heads
         | 
| 77 | 
            -
                        mlp_ratio (int): ratio of mlp hidden dim to embedding dim
         | 
| 78 | 
            -
                        qkv_bias (bool): enable bias for qkv if True
         | 
| 79 | 
            -
                        proj_bias (bool): enable bias for proj in attn if True
         | 
| 80 | 
            -
                        ffn_bias (bool): enable bias for ffn if True
         | 
| 81 | 
            -
                        drop_path_rate (float): stochastic depth rate
         | 
| 82 | 
            -
                        drop_path_uniform (bool): apply uniform drop rate across blocks
         | 
| 83 | 
            -
                        weight_init (str): weight init scheme
         | 
| 84 | 
            -
                        init_values (float): layer-scale init values
         | 
| 85 | 
            -
                        embed_layer (nn.Module): patch embedding layer
         | 
| 86 | 
            -
                        act_layer (nn.Module): MLP activation layer
         | 
| 87 | 
            -
                        block_fn (nn.Module): transformer block class
         | 
| 88 | 
            -
                        ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
         | 
| 89 | 
            -
                        block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
         | 
| 90 | 
            -
                        num_register_tokens: (int) number of extra cls tokens (so-called "registers")
         | 
| 91 | 
            -
                        interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
         | 
| 92 | 
            -
                        interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
         | 
| 93 | 
            -
                    """
         | 
| 94 | 
            -
                    super().__init__()
         | 
| 95 | 
            -
                    norm_layer = partial(nn.LayerNorm, eps=1e-6)
         | 
| 96 | 
            -
             | 
| 97 | 
            -
                    self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
         | 
| 98 | 
            -
                    self.num_tokens = 1
         | 
| 99 | 
            -
                    self.n_blocks = depth
         | 
| 100 | 
            -
                    self.num_heads = num_heads
         | 
| 101 | 
            -
                    self.patch_size = patch_size
         | 
| 102 | 
            -
                    self.num_register_tokens = num_register_tokens
         | 
| 103 | 
            -
                    self.interpolate_antialias = interpolate_antialias
         | 
| 104 | 
            -
                    self.interpolate_offset = interpolate_offset
         | 
| 105 | 
            -
             | 
| 106 | 
            -
                    self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
         | 
| 107 | 
            -
                    num_patches = self.patch_embed.num_patches
         | 
| 108 | 
            -
             | 
| 109 | 
            -
                    self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
         | 
| 110 | 
            -
                    self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
         | 
| 111 | 
            -
                    assert num_register_tokens >= 0
         | 
| 112 | 
            -
                    self.register_tokens = (
         | 
| 113 | 
            -
                        nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
         | 
| 114 | 
            -
                    )
         | 
| 115 | 
            -
             | 
| 116 | 
            -
                    if drop_path_uniform is True:
         | 
| 117 | 
            -
                        dpr = [drop_path_rate] * depth
         | 
| 118 | 
            -
                    else:
         | 
| 119 | 
            -
                        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
         | 
| 120 | 
            -
             | 
| 121 | 
            -
                    if ffn_layer == "mlp":
         | 
| 122 | 
            -
                        logger.info("using MLP layer as FFN")
         | 
| 123 | 
            -
                        ffn_layer = Mlp
         | 
| 124 | 
            -
                    elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
         | 
| 125 | 
            -
                        logger.info("using SwiGLU layer as FFN")
         | 
| 126 | 
            -
                        ffn_layer = SwiGLUFFNFused
         | 
| 127 | 
            -
                    elif ffn_layer == "identity":
         | 
| 128 | 
            -
                        logger.info("using Identity layer as FFN")
         | 
| 129 | 
            -
             | 
| 130 | 
            -
                        def f(*args, **kwargs):
         | 
| 131 | 
            -
                            return nn.Identity()
         | 
| 132 | 
            -
             | 
| 133 | 
            -
                        ffn_layer = f
         | 
| 134 | 
            -
                    else:
         | 
| 135 | 
            -
                        raise NotImplementedError
         | 
| 136 | 
            -
             | 
| 137 | 
            -
                    blocks_list = [
         | 
| 138 | 
            -
                        block_fn(
         | 
| 139 | 
            -
                            dim=embed_dim,
         | 
| 140 | 
            -
                            num_heads=num_heads,
         | 
| 141 | 
            -
                            mlp_ratio=mlp_ratio,
         | 
| 142 | 
            -
                            qkv_bias=qkv_bias,
         | 
| 143 | 
            -
                            proj_bias=proj_bias,
         | 
| 144 | 
            -
                            ffn_bias=ffn_bias,
         | 
| 145 | 
            -
                            drop_path=dpr[i],
         | 
| 146 | 
            -
                            norm_layer=norm_layer,
         | 
| 147 | 
            -
                            act_layer=act_layer,
         | 
| 148 | 
            -
                            ffn_layer=ffn_layer,
         | 
| 149 | 
            -
                            init_values=init_values,
         | 
| 150 | 
            -
                        )
         | 
| 151 | 
            -
                        for i in range(depth)
         | 
| 152 | 
            -
                    ]
         | 
| 153 | 
            -
                    if block_chunks > 0:
         | 
| 154 | 
            -
                        self.chunked_blocks = True
         | 
| 155 | 
            -
                        chunked_blocks = []
         | 
| 156 | 
            -
                        chunksize = depth // block_chunks
         | 
| 157 | 
            -
                        for i in range(0, depth, chunksize):
         | 
| 158 | 
            -
                            # this is to keep the block index consistent if we chunk the block list
         | 
| 159 | 
            -
                            chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
         | 
| 160 | 
            -
                        self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
         | 
| 161 | 
            -
                    else:
         | 
| 162 | 
            -
                        self.chunked_blocks = False
         | 
| 163 | 
            -
                        self.blocks = nn.ModuleList(blocks_list)
         | 
| 164 | 
            -
             | 
| 165 | 
            -
                    self.norm = norm_layer(embed_dim)
         | 
| 166 | 
            -
                    self.head = nn.Identity()
         | 
| 167 | 
            -
             | 
| 168 | 
            -
                    self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
         | 
| 169 | 
            -
             | 
| 170 | 
            -
                    self.init_weights()
         | 
| 171 | 
            -
             | 
| 172 | 
            -
                def init_weights(self):
         | 
| 173 | 
            -
                    trunc_normal_(self.pos_embed, std=0.02)
         | 
| 174 | 
            -
                    nn.init.normal_(self.cls_token, std=1e-6)
         | 
| 175 | 
            -
                    if self.register_tokens is not None:
         | 
| 176 | 
            -
                        nn.init.normal_(self.register_tokens, std=1e-6)
         | 
| 177 | 
            -
                    named_apply(init_weights_vit_timm, self)
         | 
| 178 | 
            -
             | 
| 179 | 
            -
                def interpolate_pos_encoding(self, x, w, h):
         | 
| 180 | 
            -
                    previous_dtype = x.dtype
         | 
| 181 | 
            -
                    npatch = x.shape[1] - 1
         | 
| 182 | 
            -
                    N = self.pos_embed.shape[1] - 1
         | 
| 183 | 
            -
                    if npatch == N and w == h:
         | 
| 184 | 
            -
                        return self.pos_embed
         | 
| 185 | 
            -
                    pos_embed = self.pos_embed.float()
         | 
| 186 | 
            -
                    class_pos_embed = pos_embed[:, 0]
         | 
| 187 | 
            -
                    patch_pos_embed = pos_embed[:, 1:]
         | 
| 188 | 
            -
                    dim = x.shape[-1]
         | 
| 189 | 
            -
                    w0 = w // self.patch_size
         | 
| 190 | 
            -
                    h0 = h // self.patch_size
         | 
| 191 | 
            -
                    # we add a small number to avoid floating point error in the interpolation
         | 
| 192 | 
            -
                    # see discussion at https://github.com/facebookresearch/dino/issues/8
         | 
| 193 | 
            -
                    # DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
         | 
| 194 | 
            -
                    w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
         | 
| 195 | 
            -
                    # w0, h0 = w0 + 0.1, h0 + 0.1
         | 
| 196 | 
            -
                    
         | 
| 197 | 
            -
                    sqrt_N = math.sqrt(N)
         | 
| 198 | 
            -
                    sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
         | 
| 199 | 
            -
                    patch_pos_embed = nn.functional.interpolate(
         | 
| 200 | 
            -
                        patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
         | 
| 201 | 
            -
                        scale_factor=(sx, sy),
         | 
| 202 | 
            -
                        # (int(w0), int(h0)), # to solve the upsampling shape issue
         | 
| 203 | 
            -
                        mode="bicubic",
         | 
| 204 | 
            -
                        antialias=self.interpolate_antialias
         | 
| 205 | 
            -
                    )
         | 
| 206 | 
            -
                    
         | 
| 207 | 
            -
                    assert int(w0) == patch_pos_embed.shape[-2]
         | 
| 208 | 
            -
                    assert int(h0) == patch_pos_embed.shape[-1]
         | 
| 209 | 
            -
                    patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
         | 
| 210 | 
            -
                    return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
         | 
| 211 | 
            -
             | 
| 212 | 
            -
                def prepare_tokens_with_masks(self, x, masks=None):
         | 
| 213 | 
            -
                    B, nc, w, h = x.shape
         | 
| 214 | 
            -
                    x = self.patch_embed(x)
         | 
| 215 | 
            -
                    if masks is not None:
         | 
| 216 | 
            -
                        x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
         | 
| 217 | 
            -
             | 
| 218 | 
            -
                    x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
         | 
| 219 | 
            -
                    x = x + self.interpolate_pos_encoding(x, w, h)
         | 
| 220 | 
            -
             | 
| 221 | 
            -
                    if self.register_tokens is not None:
         | 
| 222 | 
            -
                        x = torch.cat(
         | 
| 223 | 
            -
                            (
         | 
| 224 | 
            -
                                x[:, :1],
         | 
| 225 | 
            -
                                self.register_tokens.expand(x.shape[0], -1, -1),
         | 
| 226 | 
            -
                                x[:, 1:],
         | 
| 227 | 
            -
                            ),
         | 
| 228 | 
            -
                            dim=1,
         | 
| 229 | 
            -
                        )
         | 
| 230 | 
            -
             | 
| 231 | 
            -
                    return x
         | 
| 232 | 
            -
             | 
| 233 | 
            -
                def forward_features_list(self, x_list, masks_list):
         | 
| 234 | 
            -
                    x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
         | 
| 235 | 
            -
                    for blk in self.blocks:
         | 
| 236 | 
            -
                        x = blk(x)
         | 
| 237 | 
            -
             | 
| 238 | 
            -
                    all_x = x
         | 
| 239 | 
            -
                    output = []
         | 
| 240 | 
            -
                    for x, masks in zip(all_x, masks_list):
         | 
| 241 | 
            -
                        x_norm = self.norm(x)
         | 
| 242 | 
            -
                        output.append(
         | 
| 243 | 
            -
                            {
         | 
| 244 | 
            -
                                "x_norm_clstoken": x_norm[:, 0],
         | 
| 245 | 
            -
                                "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
         | 
| 246 | 
            -
                                "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
         | 
| 247 | 
            -
                                "x_prenorm": x,
         | 
| 248 | 
            -
                                "masks": masks,
         | 
| 249 | 
            -
                            }
         | 
| 250 | 
            -
                        )
         | 
| 251 | 
            -
                    return output
         | 
| 252 | 
            -
             | 
| 253 | 
            -
                def forward_features(self, x, masks=None):
         | 
| 254 | 
            -
                    if isinstance(x, list):
         | 
| 255 | 
            -
                        return self.forward_features_list(x, masks)
         | 
| 256 | 
            -
             | 
| 257 | 
            -
                    x = self.prepare_tokens_with_masks(x, masks)
         | 
| 258 | 
            -
             | 
| 259 | 
            -
                    for blk in self.blocks:
         | 
| 260 | 
            -
                        x = blk(x)
         | 
| 261 | 
            -
             | 
| 262 | 
            -
                    x_norm = self.norm(x)
         | 
| 263 | 
            -
                    return {
         | 
| 264 | 
            -
                        "x_norm_clstoken": x_norm[:, 0],
         | 
| 265 | 
            -
                        "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
         | 
| 266 | 
            -
                        "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
         | 
| 267 | 
            -
                        "x_prenorm": x,
         | 
| 268 | 
            -
                        "masks": masks,
         | 
| 269 | 
            -
                    }
         | 
| 270 | 
            -
             | 
| 271 | 
            -
                def _get_intermediate_layers_not_chunked(self, x, n=1):
         | 
| 272 | 
            -
                    x = self.prepare_tokens_with_masks(x)
         | 
| 273 | 
            -
                    # If n is an int, take the n last blocks. If it's a list, take them
         | 
| 274 | 
            -
                    output, total_block_len = [], len(self.blocks)
         | 
| 275 | 
            -
                    blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
         | 
| 276 | 
            -
                    for i, blk in enumerate(self.blocks):
         | 
| 277 | 
            -
                        x = blk(x)
         | 
| 278 | 
            -
                        if i in blocks_to_take:
         | 
| 279 | 
            -
                            output.append(x)
         | 
| 280 | 
            -
                    assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
         | 
| 281 | 
            -
                    return output
         | 
| 282 | 
            -
             | 
| 283 | 
            -
                def _get_intermediate_layers_chunked(self, x, n=1):
         | 
| 284 | 
            -
                    x = self.prepare_tokens_with_masks(x)
         | 
| 285 | 
            -
                    output, i, total_block_len = [], 0, len(self.blocks[-1])
         | 
| 286 | 
            -
                    # If n is an int, take the n last blocks. If it's a list, take them
         | 
| 287 | 
            -
                    blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
         | 
| 288 | 
            -
                    for block_chunk in self.blocks:
         | 
| 289 | 
            -
                        for blk in block_chunk[i:]:  # Passing the nn.Identity()
         | 
| 290 | 
            -
                            x = blk(x)
         | 
| 291 | 
            -
                            if i in blocks_to_take:
         | 
| 292 | 
            -
                                output.append(x)
         | 
| 293 | 
            -
                            i += 1
         | 
| 294 | 
            -
                    assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
         | 
| 295 | 
            -
                    return output
         | 
| 296 | 
            -
             | 
| 297 | 
            -
                def get_intermediate_layers(
         | 
| 298 | 
            -
                    self,
         | 
| 299 | 
            -
                    x: torch.Tensor,
         | 
| 300 | 
            -
                    n: Union[int, Sequence] = 1,  # Layers or n last layers to take
         | 
| 301 | 
            -
                    reshape: bool = False,
         | 
| 302 | 
            -
                    return_class_token: bool = False,
         | 
| 303 | 
            -
                    norm=True
         | 
| 304 | 
            -
                ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
         | 
| 305 | 
            -
                    if self.chunked_blocks:
         | 
| 306 | 
            -
                        outputs = self._get_intermediate_layers_chunked(x, n)
         | 
| 307 | 
            -
                    else:
         | 
| 308 | 
            -
                        outputs = self._get_intermediate_layers_not_chunked(x, n)
         | 
| 309 | 
            -
                    if norm:
         | 
| 310 | 
            -
                        outputs = [self.norm(out) for out in outputs]
         | 
| 311 | 
            -
                    class_tokens = [out[:, 0] for out in outputs]
         | 
| 312 | 
            -
                    outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
         | 
| 313 | 
            -
                    if reshape:
         | 
| 314 | 
            -
                        B, _, w, h = x.shape
         | 
| 315 | 
            -
                        outputs = [
         | 
| 316 | 
            -
                            out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
         | 
| 317 | 
            -
                            for out in outputs
         | 
| 318 | 
            -
                        ]
         | 
| 319 | 
            -
                    if return_class_token:
         | 
| 320 | 
            -
                        return tuple(zip(outputs, class_tokens))
         | 
| 321 | 
            -
                    return tuple(outputs)
         | 
| 322 | 
            -
             | 
| 323 | 
            -
                def forward(self, *args, is_training=False, **kwargs):
         | 
| 324 | 
            -
                    ret = self.forward_features(*args, **kwargs)
         | 
| 325 | 
            -
                    if is_training:
         | 
| 326 | 
            -
                        return ret
         | 
| 327 | 
            -
                    else:
         | 
| 328 | 
            -
                        return self.head(ret["x_norm_clstoken"])
         | 
| 329 | 
            -
             | 
| 330 | 
            -
             | 
| 331 | 
            -
            def init_weights_vit_timm(module: nn.Module, name: str = ""):
         | 
| 332 | 
            -
                """ViT weight initialization, original timm impl (for reproducibility)"""
         | 
| 333 | 
            -
                if isinstance(module, nn.Linear):
         | 
| 334 | 
            -
                    trunc_normal_(module.weight, std=0.02)
         | 
| 335 | 
            -
                    if module.bias is not None:
         | 
| 336 | 
            -
                        nn.init.zeros_(module.bias)
         | 
| 337 | 
            -
             | 
| 338 | 
            -
             | 
| 339 | 
            -
            def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 340 | 
            -
                model = DinoVisionTransformer(
         | 
| 341 | 
            -
                    patch_size=patch_size,
         | 
| 342 | 
            -
                    embed_dim=384,
         | 
| 343 | 
            -
                    depth=12,
         | 
| 344 | 
            -
                    num_heads=6,
         | 
| 345 | 
            -
                    mlp_ratio=4,
         | 
| 346 | 
            -
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 347 | 
            -
                    num_register_tokens=num_register_tokens,
         | 
| 348 | 
            -
                    **kwargs,
         | 
| 349 | 
            -
                )
         | 
| 350 | 
            -
                return model
         | 
| 351 | 
            -
             | 
| 352 | 
            -
             | 
| 353 | 
            -
            def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 354 | 
            -
                model = DinoVisionTransformer(
         | 
| 355 | 
            -
                    patch_size=patch_size,
         | 
| 356 | 
            -
                    embed_dim=768,
         | 
| 357 | 
            -
                    depth=12,
         | 
| 358 | 
            -
                    num_heads=12,
         | 
| 359 | 
            -
                    mlp_ratio=4,
         | 
| 360 | 
            -
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 361 | 
            -
                    num_register_tokens=num_register_tokens,
         | 
| 362 | 
            -
                    **kwargs,
         | 
| 363 | 
            -
                )
         | 
| 364 | 
            -
                return model
         | 
| 365 | 
            -
             | 
| 366 | 
            -
             | 
| 367 | 
            -
            def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 368 | 
            -
                model = DinoVisionTransformer(
         | 
| 369 | 
            -
                    patch_size=patch_size,
         | 
| 370 | 
            -
                    embed_dim=1024,
         | 
| 371 | 
            -
                    depth=24,
         | 
| 372 | 
            -
                    num_heads=16,
         | 
| 373 | 
            -
                    mlp_ratio=4,
         | 
| 374 | 
            -
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 375 | 
            -
                    num_register_tokens=num_register_tokens,
         | 
| 376 | 
            -
                    **kwargs,
         | 
| 377 | 
            -
                )
         | 
| 378 | 
            -
                return model
         | 
| 379 | 
            -
             | 
| 380 | 
            -
             | 
| 381 | 
            -
            def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 382 | 
            -
                """
         | 
| 383 | 
            -
                Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
         | 
| 384 | 
            -
                """
         | 
| 385 | 
            -
                model = DinoVisionTransformer(
         | 
| 386 | 
            -
                    patch_size=patch_size,
         | 
| 387 | 
            -
                    embed_dim=1536,
         | 
| 388 | 
            -
                    depth=40,
         | 
| 389 | 
            -
                    num_heads=24,
         | 
| 390 | 
            -
                    mlp_ratio=4,
         | 
| 391 | 
            -
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 392 | 
            -
                    num_register_tokens=num_register_tokens,
         | 
| 393 | 
            -
                    **kwargs,
         | 
| 394 | 
            -
                )
         | 
| 395 | 
            -
                return model
         | 
| 396 | 
            -
             | 
| 397 | 
            -
             | 
| 398 | 
            -
            def DINOv2(model_name):
         | 
| 399 | 
            -
                model_zoo = {
         | 
| 400 | 
            -
                    "vits": vit_small, 
         | 
| 401 | 
            -
                    "vitb": vit_base, 
         | 
| 402 | 
            -
                    "vitl": vit_large, 
         | 
| 403 | 
            -
                    "vitg": vit_giant2
         | 
| 404 | 
            -
                }
         | 
| 405 | 
            -
                
         | 
| 406 | 
            -
                return model_zoo[model_name](
         | 
| 407 | 
            -
                    img_size=518,
         | 
| 408 | 
            -
                    patch_size=14,
         | 
| 409 | 
            -
                    init_values=1.0,
         | 
| 410 | 
            -
                    ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
         | 
| 411 | 
            -
                    block_chunks=0,
         | 
| 412 | 
            -
                    num_register_tokens=0,
         | 
| 413 | 
            -
                    interpolate_antialias=False,
         | 
| 414 | 
            -
                    interpolate_offset=0.1
         | 
| 415 | 
            -
                )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/__init__.py
    DELETED
    
    | @@ -1,11 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            from .mlp import Mlp
         | 
| 8 | 
            -
            from .patch_embed import PatchEmbed
         | 
| 9 | 
            -
            from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
         | 
| 10 | 
            -
            from .block import NestedTensorBlock
         | 
| 11 | 
            -
            from .attention import MemEffAttention
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/attention.py
    DELETED
    
    | @@ -1,83 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            # References:
         | 
| 8 | 
            -
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            -
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            import logging
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            from torch import Tensor
         | 
| 14 | 
            -
            from torch import nn
         | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
            logger = logging.getLogger("dinov2")
         | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
            try:
         | 
| 21 | 
            -
                from xformers.ops import memory_efficient_attention, unbind, fmha
         | 
| 22 | 
            -
             | 
| 23 | 
            -
                XFORMERS_AVAILABLE = True
         | 
| 24 | 
            -
            except ImportError:
         | 
| 25 | 
            -
                logger.warning("xFormers not available")
         | 
| 26 | 
            -
                XFORMERS_AVAILABLE = False
         | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
            class Attention(nn.Module):
         | 
| 30 | 
            -
                def __init__(
         | 
| 31 | 
            -
                    self,
         | 
| 32 | 
            -
                    dim: int,
         | 
| 33 | 
            -
                    num_heads: int = 8,
         | 
| 34 | 
            -
                    qkv_bias: bool = False,
         | 
| 35 | 
            -
                    proj_bias: bool = True,
         | 
| 36 | 
            -
                    attn_drop: float = 0.0,
         | 
| 37 | 
            -
                    proj_drop: float = 0.0,
         | 
| 38 | 
            -
                ) -> None:
         | 
| 39 | 
            -
                    super().__init__()
         | 
| 40 | 
            -
                    self.num_heads = num_heads
         | 
| 41 | 
            -
                    head_dim = dim // num_heads
         | 
| 42 | 
            -
                    self.scale = head_dim**-0.5
         | 
| 43 | 
            -
             | 
| 44 | 
            -
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         | 
| 45 | 
            -
                    self.attn_drop = nn.Dropout(attn_drop)
         | 
| 46 | 
            -
                    self.proj = nn.Linear(dim, dim, bias=proj_bias)
         | 
| 47 | 
            -
                    self.proj_drop = nn.Dropout(proj_drop)
         | 
| 48 | 
            -
             | 
| 49 | 
            -
                def forward(self, x: Tensor) -> Tensor:
         | 
| 50 | 
            -
                    B, N, C = x.shape
         | 
| 51 | 
            -
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                    q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
         | 
| 54 | 
            -
                    attn = q @ k.transpose(-2, -1)
         | 
| 55 | 
            -
             | 
| 56 | 
            -
                    attn = attn.softmax(dim=-1)
         | 
| 57 | 
            -
                    attn = self.attn_drop(attn)
         | 
| 58 | 
            -
             | 
| 59 | 
            -
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 60 | 
            -
                    x = self.proj(x)
         | 
| 61 | 
            -
                    x = self.proj_drop(x)
         | 
| 62 | 
            -
                    return x
         | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
            class MemEffAttention(Attention):
         | 
| 66 | 
            -
                def forward(self, x: Tensor, attn_bias=None) -> Tensor:
         | 
| 67 | 
            -
                    if not XFORMERS_AVAILABLE:
         | 
| 68 | 
            -
                        assert attn_bias is None, "xFormers is required for nested tensors usage"
         | 
| 69 | 
            -
                        return super().forward(x)
         | 
| 70 | 
            -
             | 
| 71 | 
            -
                    B, N, C = x.shape
         | 
| 72 | 
            -
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
         | 
| 73 | 
            -
             | 
| 74 | 
            -
                    q, k, v = unbind(qkv, 2)
         | 
| 75 | 
            -
             | 
| 76 | 
            -
                    x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
         | 
| 77 | 
            -
                    x = x.reshape([B, N, C])
         | 
| 78 | 
            -
             | 
| 79 | 
            -
                    x = self.proj(x)
         | 
| 80 | 
            -
                    x = self.proj_drop(x)
         | 
| 81 | 
            -
                    return x
         | 
| 82 | 
            -
             | 
| 83 | 
            -
                    
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/block.py
    DELETED
    
    | @@ -1,252 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            # References:
         | 
| 8 | 
            -
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            -
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            import logging
         | 
| 12 | 
            -
            from typing import Callable, List, Any, Tuple, Dict
         | 
| 13 | 
            -
             | 
| 14 | 
            -
            import torch
         | 
| 15 | 
            -
            from torch import nn, Tensor
         | 
| 16 | 
            -
             | 
| 17 | 
            -
            from .attention import Attention, MemEffAttention
         | 
| 18 | 
            -
            from .drop_path import DropPath
         | 
| 19 | 
            -
            from .layer_scale import LayerScale
         | 
| 20 | 
            -
            from .mlp import Mlp
         | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
            logger = logging.getLogger("dinov2")
         | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
            try:
         | 
| 27 | 
            -
                from xformers.ops import fmha
         | 
| 28 | 
            -
                from xformers.ops import scaled_index_add, index_select_cat
         | 
| 29 | 
            -
             | 
| 30 | 
            -
                XFORMERS_AVAILABLE = True
         | 
| 31 | 
            -
            except ImportError:
         | 
| 32 | 
            -
                logger.warning("xFormers not available")
         | 
| 33 | 
            -
                XFORMERS_AVAILABLE = False
         | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
            class Block(nn.Module):
         | 
| 37 | 
            -
                def __init__(
         | 
| 38 | 
            -
                    self,
         | 
| 39 | 
            -
                    dim: int,
         | 
| 40 | 
            -
                    num_heads: int,
         | 
| 41 | 
            -
                    mlp_ratio: float = 4.0,
         | 
| 42 | 
            -
                    qkv_bias: bool = False,
         | 
| 43 | 
            -
                    proj_bias: bool = True,
         | 
| 44 | 
            -
                    ffn_bias: bool = True,
         | 
| 45 | 
            -
                    drop: float = 0.0,
         | 
| 46 | 
            -
                    attn_drop: float = 0.0,
         | 
| 47 | 
            -
                    init_values=None,
         | 
| 48 | 
            -
                    drop_path: float = 0.0,
         | 
| 49 | 
            -
                    act_layer: Callable[..., nn.Module] = nn.GELU,
         | 
| 50 | 
            -
                    norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
         | 
| 51 | 
            -
                    attn_class: Callable[..., nn.Module] = Attention,
         | 
| 52 | 
            -
                    ffn_layer: Callable[..., nn.Module] = Mlp,
         | 
| 53 | 
            -
                ) -> None:
         | 
| 54 | 
            -
                    super().__init__()
         | 
| 55 | 
            -
                    # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
         | 
| 56 | 
            -
                    self.norm1 = norm_layer(dim)
         | 
| 57 | 
            -
                    self.attn = attn_class(
         | 
| 58 | 
            -
                        dim,
         | 
| 59 | 
            -
                        num_heads=num_heads,
         | 
| 60 | 
            -
                        qkv_bias=qkv_bias,
         | 
| 61 | 
            -
                        proj_bias=proj_bias,
         | 
| 62 | 
            -
                        attn_drop=attn_drop,
         | 
| 63 | 
            -
                        proj_drop=drop,
         | 
| 64 | 
            -
                    )
         | 
| 65 | 
            -
                    self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
         | 
| 66 | 
            -
                    self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
         | 
| 67 | 
            -
             | 
| 68 | 
            -
                    self.norm2 = norm_layer(dim)
         | 
| 69 | 
            -
                    mlp_hidden_dim = int(dim * mlp_ratio)
         | 
| 70 | 
            -
                    self.mlp = ffn_layer(
         | 
| 71 | 
            -
                        in_features=dim,
         | 
| 72 | 
            -
                        hidden_features=mlp_hidden_dim,
         | 
| 73 | 
            -
                        act_layer=act_layer,
         | 
| 74 | 
            -
                        drop=drop,
         | 
| 75 | 
            -
                        bias=ffn_bias,
         | 
| 76 | 
            -
                    )
         | 
| 77 | 
            -
                    self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
         | 
| 78 | 
            -
                    self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
         | 
| 79 | 
            -
             | 
| 80 | 
            -
                    self.sample_drop_ratio = drop_path
         | 
| 81 | 
            -
             | 
| 82 | 
            -
                def forward(self, x: Tensor) -> Tensor:
         | 
| 83 | 
            -
                    def attn_residual_func(x: Tensor) -> Tensor:
         | 
| 84 | 
            -
                        return self.ls1(self.attn(self.norm1(x)))
         | 
| 85 | 
            -
             | 
| 86 | 
            -
                    def ffn_residual_func(x: Tensor) -> Tensor:
         | 
| 87 | 
            -
                        return self.ls2(self.mlp(self.norm2(x)))
         | 
| 88 | 
            -
             | 
| 89 | 
            -
                    if self.training and self.sample_drop_ratio > 0.1:
         | 
| 90 | 
            -
                        # the overhead is compensated only for a drop path rate larger than 0.1
         | 
| 91 | 
            -
                        x = drop_add_residual_stochastic_depth(
         | 
| 92 | 
            -
                            x,
         | 
| 93 | 
            -
                            residual_func=attn_residual_func,
         | 
| 94 | 
            -
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 95 | 
            -
                        )
         | 
| 96 | 
            -
                        x = drop_add_residual_stochastic_depth(
         | 
| 97 | 
            -
                            x,
         | 
| 98 | 
            -
                            residual_func=ffn_residual_func,
         | 
| 99 | 
            -
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 100 | 
            -
                        )
         | 
| 101 | 
            -
                    elif self.training and self.sample_drop_ratio > 0.0:
         | 
| 102 | 
            -
                        x = x + self.drop_path1(attn_residual_func(x))
         | 
| 103 | 
            -
                        x = x + self.drop_path1(ffn_residual_func(x))  # FIXME: drop_path2
         | 
| 104 | 
            -
                    else:
         | 
| 105 | 
            -
                        x = x + attn_residual_func(x)
         | 
| 106 | 
            -
                        x = x + ffn_residual_func(x)
         | 
| 107 | 
            -
                    return x
         | 
| 108 | 
            -
             | 
| 109 | 
            -
             | 
| 110 | 
            -
            def drop_add_residual_stochastic_depth(
         | 
| 111 | 
            -
                x: Tensor,
         | 
| 112 | 
            -
                residual_func: Callable[[Tensor], Tensor],
         | 
| 113 | 
            -
                sample_drop_ratio: float = 0.0,
         | 
| 114 | 
            -
            ) -> Tensor:
         | 
| 115 | 
            -
                # 1) extract subset using permutation
         | 
| 116 | 
            -
                b, n, d = x.shape
         | 
| 117 | 
            -
                sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
         | 
| 118 | 
            -
                brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
         | 
| 119 | 
            -
                x_subset = x[brange]
         | 
| 120 | 
            -
             | 
| 121 | 
            -
                # 2) apply residual_func to get residual
         | 
| 122 | 
            -
                residual = residual_func(x_subset)
         | 
| 123 | 
            -
             | 
| 124 | 
            -
                x_flat = x.flatten(1)
         | 
| 125 | 
            -
                residual = residual.flatten(1)
         | 
| 126 | 
            -
             | 
| 127 | 
            -
                residual_scale_factor = b / sample_subset_size
         | 
| 128 | 
            -
             | 
| 129 | 
            -
                # 3) add the residual
         | 
| 130 | 
            -
                x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
         | 
| 131 | 
            -
                return x_plus_residual.view_as(x)
         | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
| 134 | 
            -
            def get_branges_scales(x, sample_drop_ratio=0.0):
         | 
| 135 | 
            -
                b, n, d = x.shape
         | 
| 136 | 
            -
                sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
         | 
| 137 | 
            -
                brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
         | 
| 138 | 
            -
                residual_scale_factor = b / sample_subset_size
         | 
| 139 | 
            -
                return brange, residual_scale_factor
         | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
            def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
         | 
| 143 | 
            -
                if scaling_vector is None:
         | 
| 144 | 
            -
                    x_flat = x.flatten(1)
         | 
| 145 | 
            -
                    residual = residual.flatten(1)
         | 
| 146 | 
            -
                    x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
         | 
| 147 | 
            -
                else:
         | 
| 148 | 
            -
                    x_plus_residual = scaled_index_add(
         | 
| 149 | 
            -
                        x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
         | 
| 150 | 
            -
                    )
         | 
| 151 | 
            -
                return x_plus_residual
         | 
| 152 | 
            -
             | 
| 153 | 
            -
             | 
| 154 | 
            -
            attn_bias_cache: Dict[Tuple, Any] = {}
         | 
| 155 | 
            -
             | 
| 156 | 
            -
             | 
| 157 | 
            -
            def get_attn_bias_and_cat(x_list, branges=None):
         | 
| 158 | 
            -
                """
         | 
| 159 | 
            -
                this will perform the index select, cat the tensors, and provide the attn_bias from cache
         | 
| 160 | 
            -
                """
         | 
| 161 | 
            -
                batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
         | 
| 162 | 
            -
                all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
         | 
| 163 | 
            -
                if all_shapes not in attn_bias_cache.keys():
         | 
| 164 | 
            -
                    seqlens = []
         | 
| 165 | 
            -
                    for b, x in zip(batch_sizes, x_list):
         | 
| 166 | 
            -
                        for _ in range(b):
         | 
| 167 | 
            -
                            seqlens.append(x.shape[1])
         | 
| 168 | 
            -
                    attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
         | 
| 169 | 
            -
                    attn_bias._batch_sizes = batch_sizes
         | 
| 170 | 
            -
                    attn_bias_cache[all_shapes] = attn_bias
         | 
| 171 | 
            -
             | 
| 172 | 
            -
                if branges is not None:
         | 
| 173 | 
            -
                    cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
         | 
| 174 | 
            -
                else:
         | 
| 175 | 
            -
                    tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
         | 
| 176 | 
            -
                    cat_tensors = torch.cat(tensors_bs1, dim=1)
         | 
| 177 | 
            -
             | 
| 178 | 
            -
                return attn_bias_cache[all_shapes], cat_tensors
         | 
| 179 | 
            -
             | 
| 180 | 
            -
             | 
| 181 | 
            -
            def drop_add_residual_stochastic_depth_list(
         | 
| 182 | 
            -
                x_list: List[Tensor],
         | 
| 183 | 
            -
                residual_func: Callable[[Tensor, Any], Tensor],
         | 
| 184 | 
            -
                sample_drop_ratio: float = 0.0,
         | 
| 185 | 
            -
                scaling_vector=None,
         | 
| 186 | 
            -
            ) -> Tensor:
         | 
| 187 | 
            -
                # 1) generate random set of indices for dropping samples in the batch
         | 
| 188 | 
            -
                branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
         | 
| 189 | 
            -
                branges = [s[0] for s in branges_scales]
         | 
| 190 | 
            -
                residual_scale_factors = [s[1] for s in branges_scales]
         | 
| 191 | 
            -
             | 
| 192 | 
            -
                # 2) get attention bias and index+concat the tensors
         | 
| 193 | 
            -
                attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
         | 
| 194 | 
            -
             | 
| 195 | 
            -
                # 3) apply residual_func to get residual, and split the result
         | 
| 196 | 
            -
                residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias))  # type: ignore
         | 
| 197 | 
            -
             | 
| 198 | 
            -
                outputs = []
         | 
| 199 | 
            -
                for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
         | 
| 200 | 
            -
                    outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
         | 
| 201 | 
            -
                return outputs
         | 
| 202 | 
            -
             | 
| 203 | 
            -
             | 
| 204 | 
            -
            class NestedTensorBlock(Block):
         | 
| 205 | 
            -
                def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
         | 
| 206 | 
            -
                    """
         | 
| 207 | 
            -
                    x_list contains a list of tensors to nest together and run
         | 
| 208 | 
            -
                    """
         | 
| 209 | 
            -
                    assert isinstance(self.attn, MemEffAttention)
         | 
| 210 | 
            -
             | 
| 211 | 
            -
                    if self.training and self.sample_drop_ratio > 0.0:
         | 
| 212 | 
            -
             | 
| 213 | 
            -
                        def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 214 | 
            -
                            return self.attn(self.norm1(x), attn_bias=attn_bias)
         | 
| 215 | 
            -
             | 
| 216 | 
            -
                        def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 217 | 
            -
                            return self.mlp(self.norm2(x))
         | 
| 218 | 
            -
             | 
| 219 | 
            -
                        x_list = drop_add_residual_stochastic_depth_list(
         | 
| 220 | 
            -
                            x_list,
         | 
| 221 | 
            -
                            residual_func=attn_residual_func,
         | 
| 222 | 
            -
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 223 | 
            -
                            scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
         | 
| 224 | 
            -
                        )
         | 
| 225 | 
            -
                        x_list = drop_add_residual_stochastic_depth_list(
         | 
| 226 | 
            -
                            x_list,
         | 
| 227 | 
            -
                            residual_func=ffn_residual_func,
         | 
| 228 | 
            -
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 229 | 
            -
                            scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
         | 
| 230 | 
            -
                        )
         | 
| 231 | 
            -
                        return x_list
         | 
| 232 | 
            -
                    else:
         | 
| 233 | 
            -
             | 
| 234 | 
            -
                        def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 235 | 
            -
                            return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
         | 
| 236 | 
            -
             | 
| 237 | 
            -
                        def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 238 | 
            -
                            return self.ls2(self.mlp(self.norm2(x)))
         | 
| 239 | 
            -
             | 
| 240 | 
            -
                        attn_bias, x = get_attn_bias_and_cat(x_list)
         | 
| 241 | 
            -
                        x = x + attn_residual_func(x, attn_bias=attn_bias)
         | 
| 242 | 
            -
                        x = x + ffn_residual_func(x)
         | 
| 243 | 
            -
                        return attn_bias.split(x)
         | 
| 244 | 
            -
             | 
| 245 | 
            -
                def forward(self, x_or_x_list):
         | 
| 246 | 
            -
                    if isinstance(x_or_x_list, Tensor):
         | 
| 247 | 
            -
                        return super().forward(x_or_x_list)
         | 
| 248 | 
            -
                    elif isinstance(x_or_x_list, list):
         | 
| 249 | 
            -
                        assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
         | 
| 250 | 
            -
                        return self.forward_nested(x_or_x_list)
         | 
| 251 | 
            -
                    else:
         | 
| 252 | 
            -
                        raise AssertionError
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/drop_path.py
    DELETED
    
    | @@ -1,35 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            # References:
         | 
| 8 | 
            -
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            -
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
         | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
            from torch import nn
         | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
            def drop_path(x, drop_prob: float = 0.0, training: bool = False):
         | 
| 16 | 
            -
                if drop_prob == 0.0 or not training:
         | 
| 17 | 
            -
                    return x
         | 
| 18 | 
            -
                keep_prob = 1 - drop_prob
         | 
| 19 | 
            -
                shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
         | 
| 20 | 
            -
                random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
         | 
| 21 | 
            -
                if keep_prob > 0.0:
         | 
| 22 | 
            -
                    random_tensor.div_(keep_prob)
         | 
| 23 | 
            -
                output = x * random_tensor
         | 
| 24 | 
            -
                return output
         | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
            class DropPath(nn.Module):
         | 
| 28 | 
            -
                """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
         | 
| 29 | 
            -
             | 
| 30 | 
            -
                def __init__(self, drop_prob=None):
         | 
| 31 | 
            -
                    super(DropPath, self).__init__()
         | 
| 32 | 
            -
                    self.drop_prob = drop_prob
         | 
| 33 | 
            -
             | 
| 34 | 
            -
                def forward(self, x):
         | 
| 35 | 
            -
                    return drop_path(x, self.drop_prob, self.training)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/layer_scale.py
    DELETED
    
    | @@ -1,28 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            # Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            from typing import Union
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            import torch
         | 
| 12 | 
            -
            from torch import Tensor
         | 
| 13 | 
            -
            from torch import nn
         | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
            class LayerScale(nn.Module):
         | 
| 17 | 
            -
                def __init__(
         | 
| 18 | 
            -
                    self,
         | 
| 19 | 
            -
                    dim: int,
         | 
| 20 | 
            -
                    init_values: Union[float, Tensor] = 1e-5,
         | 
| 21 | 
            -
                    inplace: bool = False,
         | 
| 22 | 
            -
                ) -> None:
         | 
| 23 | 
            -
                    super().__init__()
         | 
| 24 | 
            -
                    self.inplace = inplace
         | 
| 25 | 
            -
                    self.gamma = nn.Parameter(init_values * torch.ones(dim))
         | 
| 26 | 
            -
             | 
| 27 | 
            -
                def forward(self, x: Tensor) -> Tensor:
         | 
| 28 | 
            -
                    return x.mul_(self.gamma) if self.inplace else x * self.gamma
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/mlp.py
    DELETED
    
    | @@ -1,41 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            # References:
         | 
| 8 | 
            -
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            -
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
         | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
            from typing import Callable, Optional
         | 
| 13 | 
            -
             | 
| 14 | 
            -
            from torch import Tensor, nn
         | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
            class Mlp(nn.Module):
         | 
| 18 | 
            -
                def __init__(
         | 
| 19 | 
            -
                    self,
         | 
| 20 | 
            -
                    in_features: int,
         | 
| 21 | 
            -
                    hidden_features: Optional[int] = None,
         | 
| 22 | 
            -
                    out_features: Optional[int] = None,
         | 
| 23 | 
            -
                    act_layer: Callable[..., nn.Module] = nn.GELU,
         | 
| 24 | 
            -
                    drop: float = 0.0,
         | 
| 25 | 
            -
                    bias: bool = True,
         | 
| 26 | 
            -
                ) -> None:
         | 
| 27 | 
            -
                    super().__init__()
         | 
| 28 | 
            -
                    out_features = out_features or in_features
         | 
| 29 | 
            -
                    hidden_features = hidden_features or in_features
         | 
| 30 | 
            -
                    self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
         | 
| 31 | 
            -
                    self.act = act_layer()
         | 
| 32 | 
            -
                    self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
         | 
| 33 | 
            -
                    self.drop = nn.Dropout(drop)
         | 
| 34 | 
            -
             | 
| 35 | 
            -
                def forward(self, x: Tensor) -> Tensor:
         | 
| 36 | 
            -
                    x = self.fc1(x)
         | 
| 37 | 
            -
                    x = self.act(x)
         | 
| 38 | 
            -
                    x = self.drop(x)
         | 
| 39 | 
            -
                    x = self.fc2(x)
         | 
| 40 | 
            -
                    x = self.drop(x)
         | 
| 41 | 
            -
                    return x
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/patch_embed.py
    DELETED
    
    | @@ -1,89 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            # References:
         | 
| 8 | 
            -
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            -
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
         | 
| 10 | 
            -
             | 
| 11 | 
            -
            from typing import Callable, Optional, Tuple, Union
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            from torch import Tensor
         | 
| 14 | 
            -
            import torch.nn as nn
         | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
            def make_2tuple(x):
         | 
| 18 | 
            -
                if isinstance(x, tuple):
         | 
| 19 | 
            -
                    assert len(x) == 2
         | 
| 20 | 
            -
                    return x
         | 
| 21 | 
            -
             | 
| 22 | 
            -
                assert isinstance(x, int)
         | 
| 23 | 
            -
                return (x, x)
         | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
            class PatchEmbed(nn.Module):
         | 
| 27 | 
            -
                """
         | 
| 28 | 
            -
                2D image to patch embedding: (B,C,H,W) -> (B,N,D)
         | 
| 29 | 
            -
             | 
| 30 | 
            -
                Args:
         | 
| 31 | 
            -
                    img_size: Image size.
         | 
| 32 | 
            -
                    patch_size: Patch token size.
         | 
| 33 | 
            -
                    in_chans: Number of input image channels.
         | 
| 34 | 
            -
                    embed_dim: Number of linear projection output channels.
         | 
| 35 | 
            -
                    norm_layer: Normalization layer.
         | 
| 36 | 
            -
                """
         | 
| 37 | 
            -
             | 
| 38 | 
            -
                def __init__(
         | 
| 39 | 
            -
                    self,
         | 
| 40 | 
            -
                    img_size: Union[int, Tuple[int, int]] = 224,
         | 
| 41 | 
            -
                    patch_size: Union[int, Tuple[int, int]] = 16,
         | 
| 42 | 
            -
                    in_chans: int = 3,
         | 
| 43 | 
            -
                    embed_dim: int = 768,
         | 
| 44 | 
            -
                    norm_layer: Optional[Callable] = None,
         | 
| 45 | 
            -
                    flatten_embedding: bool = True,
         | 
| 46 | 
            -
                ) -> None:
         | 
| 47 | 
            -
                    super().__init__()
         | 
| 48 | 
            -
             | 
| 49 | 
            -
                    image_HW = make_2tuple(img_size)
         | 
| 50 | 
            -
                    patch_HW = make_2tuple(patch_size)
         | 
| 51 | 
            -
                    patch_grid_size = (
         | 
| 52 | 
            -
                        image_HW[0] // patch_HW[0],
         | 
| 53 | 
            -
                        image_HW[1] // patch_HW[1],
         | 
| 54 | 
            -
                    )
         | 
| 55 | 
            -
             | 
| 56 | 
            -
                    self.img_size = image_HW
         | 
| 57 | 
            -
                    self.patch_size = patch_HW
         | 
| 58 | 
            -
                    self.patches_resolution = patch_grid_size
         | 
| 59 | 
            -
                    self.num_patches = patch_grid_size[0] * patch_grid_size[1]
         | 
| 60 | 
            -
             | 
| 61 | 
            -
                    self.in_chans = in_chans
         | 
| 62 | 
            -
                    self.embed_dim = embed_dim
         | 
| 63 | 
            -
             | 
| 64 | 
            -
                    self.flatten_embedding = flatten_embedding
         | 
| 65 | 
            -
             | 
| 66 | 
            -
                    self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
         | 
| 67 | 
            -
                    self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
         | 
| 68 | 
            -
             | 
| 69 | 
            -
                def forward(self, x: Tensor) -> Tensor:
         | 
| 70 | 
            -
                    _, _, H, W = x.shape
         | 
| 71 | 
            -
                    patch_H, patch_W = self.patch_size
         | 
| 72 | 
            -
             | 
| 73 | 
            -
                    assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
         | 
| 74 | 
            -
                    assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
         | 
| 75 | 
            -
             | 
| 76 | 
            -
                    x = self.proj(x)  # B C H W
         | 
| 77 | 
            -
                    H, W = x.size(2), x.size(3)
         | 
| 78 | 
            -
                    x = x.flatten(2).transpose(1, 2)  # B HW C
         | 
| 79 | 
            -
                    x = self.norm(x)
         | 
| 80 | 
            -
                    if not self.flatten_embedding:
         | 
| 81 | 
            -
                        x = x.reshape(-1, H, W, self.embed_dim)  # B H W C
         | 
| 82 | 
            -
                    return x
         | 
| 83 | 
            -
             | 
| 84 | 
            -
                def flops(self) -> float:
         | 
| 85 | 
            -
                    Ho, Wo = self.patches_resolution
         | 
| 86 | 
            -
                    flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
         | 
| 87 | 
            -
                    if self.norm is not None:
         | 
| 88 | 
            -
                        flops += Ho * Wo * self.embed_dim
         | 
| 89 | 
            -
                    return flops
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dinov2_layers/swiglu_ffn.py
    DELETED
    
    | @@ -1,63 +0,0 @@ | |
| 1 | 
            -
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            -
            # All rights reserved.
         | 
| 3 | 
            -
            #
         | 
| 4 | 
            -
            # This source code is licensed under the license found in the
         | 
| 5 | 
            -
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            from typing import Callable, Optional
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            from torch import Tensor, nn
         | 
| 10 | 
            -
            import torch.nn.functional as F
         | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
            class SwiGLUFFN(nn.Module):
         | 
| 14 | 
            -
                def __init__(
         | 
| 15 | 
            -
                    self,
         | 
| 16 | 
            -
                    in_features: int,
         | 
| 17 | 
            -
                    hidden_features: Optional[int] = None,
         | 
| 18 | 
            -
                    out_features: Optional[int] = None,
         | 
| 19 | 
            -
                    act_layer: Callable[..., nn.Module] = None,
         | 
| 20 | 
            -
                    drop: float = 0.0,
         | 
| 21 | 
            -
                    bias: bool = True,
         | 
| 22 | 
            -
                ) -> None:
         | 
| 23 | 
            -
                    super().__init__()
         | 
| 24 | 
            -
                    out_features = out_features or in_features
         | 
| 25 | 
            -
                    hidden_features = hidden_features or in_features
         | 
| 26 | 
            -
                    self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
         | 
| 27 | 
            -
                    self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
         | 
| 28 | 
            -
             | 
| 29 | 
            -
                def forward(self, x: Tensor) -> Tensor:
         | 
| 30 | 
            -
                    x12 = self.w12(x)
         | 
| 31 | 
            -
                    x1, x2 = x12.chunk(2, dim=-1)
         | 
| 32 | 
            -
                    hidden = F.silu(x1) * x2
         | 
| 33 | 
            -
                    return self.w3(hidden)
         | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
            try:
         | 
| 37 | 
            -
                from xformers.ops import SwiGLU
         | 
| 38 | 
            -
             | 
| 39 | 
            -
                XFORMERS_AVAILABLE = True
         | 
| 40 | 
            -
            except ImportError:
         | 
| 41 | 
            -
                SwiGLU = SwiGLUFFN
         | 
| 42 | 
            -
                XFORMERS_AVAILABLE = False
         | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
            class SwiGLUFFNFused(SwiGLU):
         | 
| 46 | 
            -
                def __init__(
         | 
| 47 | 
            -
                    self,
         | 
| 48 | 
            -
                    in_features: int,
         | 
| 49 | 
            -
                    hidden_features: Optional[int] = None,
         | 
| 50 | 
            -
                    out_features: Optional[int] = None,
         | 
| 51 | 
            -
                    act_layer: Callable[..., nn.Module] = None,
         | 
| 52 | 
            -
                    drop: float = 0.0,
         | 
| 53 | 
            -
                    bias: bool = True,
         | 
| 54 | 
            -
                ) -> None:
         | 
| 55 | 
            -
                    out_features = out_features or in_features
         | 
| 56 | 
            -
                    hidden_features = hidden_features or in_features
         | 
| 57 | 
            -
                    hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
         | 
| 58 | 
            -
                    super().__init__(
         | 
| 59 | 
            -
                        in_features=in_features,
         | 
| 60 | 
            -
                        hidden_features=hidden_features,
         | 
| 61 | 
            -
                        out_features=out_features,
         | 
| 62 | 
            -
                        bias=bias,
         | 
| 63 | 
            -
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/dpt.py
    DELETED
    
    | @@ -1,222 +0,0 @@ | |
| 1 | 
            -
            import cv2
         | 
| 2 | 
            -
            import torch
         | 
| 3 | 
            -
            import torch.nn as nn
         | 
| 4 | 
            -
            import torch.nn.functional as F
         | 
| 5 | 
            -
            from torchvision.transforms import Compose
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            from .dinov2 import DINOv2
         | 
| 8 | 
            -
            from .util.blocks import FeatureFusionBlock, _make_scratch
         | 
| 9 | 
            -
            from .util.transform import Resize, NormalizeImage, PrepareForNet
         | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
            def _make_fusion_block(features, use_bn, size=None):
         | 
| 13 | 
            -
                return FeatureFusionBlock(
         | 
| 14 | 
            -
                    features,
         | 
| 15 | 
            -
                    nn.ReLU(False),
         | 
| 16 | 
            -
                    deconv=False,
         | 
| 17 | 
            -
                    bn=use_bn,
         | 
| 18 | 
            -
                    expand=False,
         | 
| 19 | 
            -
                    align_corners=True,
         | 
| 20 | 
            -
                    size=size,
         | 
| 21 | 
            -
                )
         | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
            class ConvBlock(nn.Module):
         | 
| 25 | 
            -
                def __init__(self, in_feature, out_feature):
         | 
| 26 | 
            -
                    super().__init__()
         | 
| 27 | 
            -
                    
         | 
| 28 | 
            -
                    self.conv_block = nn.Sequential(
         | 
| 29 | 
            -
                        nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
         | 
| 30 | 
            -
                        nn.BatchNorm2d(out_feature),
         | 
| 31 | 
            -
                        nn.ReLU(True)
         | 
| 32 | 
            -
                    )
         | 
| 33 | 
            -
                
         | 
| 34 | 
            -
                def forward(self, x):
         | 
| 35 | 
            -
                    return self.conv_block(x)
         | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
            class DPTHead(nn.Module):
         | 
| 39 | 
            -
                def __init__(
         | 
| 40 | 
            -
                    self, 
         | 
| 41 | 
            -
                    in_channels, 
         | 
| 42 | 
            -
                    features=256, 
         | 
| 43 | 
            -
                    use_bn=False, 
         | 
| 44 | 
            -
                    out_channels=[256, 512, 1024, 1024], 
         | 
| 45 | 
            -
                    use_clstoken=False
         | 
| 46 | 
            -
                ):
         | 
| 47 | 
            -
                    super(DPTHead, self).__init__()
         | 
| 48 | 
            -
                    
         | 
| 49 | 
            -
                    self.use_clstoken = use_clstoken
         | 
| 50 | 
            -
                    
         | 
| 51 | 
            -
                    self.projects = nn.ModuleList([
         | 
| 52 | 
            -
                        nn.Conv2d(
         | 
| 53 | 
            -
                            in_channels=in_channels,
         | 
| 54 | 
            -
                            out_channels=out_channel,
         | 
| 55 | 
            -
                            kernel_size=1,
         | 
| 56 | 
            -
                            stride=1,
         | 
| 57 | 
            -
                            padding=0,
         | 
| 58 | 
            -
                        ) for out_channel in out_channels
         | 
| 59 | 
            -
                    ])
         | 
| 60 | 
            -
                    
         | 
| 61 | 
            -
                    self.resize_layers = nn.ModuleList([
         | 
| 62 | 
            -
                        nn.ConvTranspose2d(
         | 
| 63 | 
            -
                            in_channels=out_channels[0],
         | 
| 64 | 
            -
                            out_channels=out_channels[0],
         | 
| 65 | 
            -
                            kernel_size=4,
         | 
| 66 | 
            -
                            stride=4,
         | 
| 67 | 
            -
                            padding=0),
         | 
| 68 | 
            -
                        nn.ConvTranspose2d(
         | 
| 69 | 
            -
                            in_channels=out_channels[1],
         | 
| 70 | 
            -
                            out_channels=out_channels[1],
         | 
| 71 | 
            -
                            kernel_size=2,
         | 
| 72 | 
            -
                            stride=2,
         | 
| 73 | 
            -
                            padding=0),
         | 
| 74 | 
            -
                        nn.Identity(),
         | 
| 75 | 
            -
                        nn.Conv2d(
         | 
| 76 | 
            -
                            in_channels=out_channels[3],
         | 
| 77 | 
            -
                            out_channels=out_channels[3],
         | 
| 78 | 
            -
                            kernel_size=3,
         | 
| 79 | 
            -
                            stride=2,
         | 
| 80 | 
            -
                            padding=1)
         | 
| 81 | 
            -
                    ])
         | 
| 82 | 
            -
                    
         | 
| 83 | 
            -
                    if use_clstoken:
         | 
| 84 | 
            -
                        self.readout_projects = nn.ModuleList()
         | 
| 85 | 
            -
                        for _ in range(len(self.projects)):
         | 
| 86 | 
            -
                            self.readout_projects.append(
         | 
| 87 | 
            -
                                nn.Sequential(
         | 
| 88 | 
            -
                                    nn.Linear(2 * in_channels, in_channels),
         | 
| 89 | 
            -
                                    nn.GELU()))
         | 
| 90 | 
            -
                    
         | 
| 91 | 
            -
                    self.scratch = _make_scratch(
         | 
| 92 | 
            -
                        out_channels,
         | 
| 93 | 
            -
                        features,
         | 
| 94 | 
            -
                        groups=1,
         | 
| 95 | 
            -
                        expand=False,
         | 
| 96 | 
            -
                    )
         | 
| 97 | 
            -
                    
         | 
| 98 | 
            -
                    self.scratch.stem_transpose = None
         | 
| 99 | 
            -
                    
         | 
| 100 | 
            -
                    self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
         | 
| 101 | 
            -
                    self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
         | 
| 102 | 
            -
                    self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
         | 
| 103 | 
            -
                    self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
         | 
| 104 | 
            -
                    
         | 
| 105 | 
            -
                    head_features_1 = features
         | 
| 106 | 
            -
                    head_features_2 = 32
         | 
| 107 | 
            -
                    
         | 
| 108 | 
            -
                    self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
         | 
| 109 | 
            -
                    self.scratch.output_conv2 = nn.Sequential(
         | 
| 110 | 
            -
                        nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
         | 
| 111 | 
            -
                        nn.ReLU(True),
         | 
| 112 | 
            -
                        nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
         | 
| 113 | 
            -
                        nn.Sigmoid()
         | 
| 114 | 
            -
                    )
         | 
| 115 | 
            -
                
         | 
| 116 | 
            -
                def forward(self, out_features, patch_h, patch_w):
         | 
| 117 | 
            -
                    out = []
         | 
| 118 | 
            -
                    for i, x in enumerate(out_features):
         | 
| 119 | 
            -
                        if self.use_clstoken:
         | 
| 120 | 
            -
                            x, cls_token = x[0], x[1]
         | 
| 121 | 
            -
                            readout = cls_token.unsqueeze(1).expand_as(x)
         | 
| 122 | 
            -
                            x = self.readout_projects[i](torch.cat((x, readout), -1))
         | 
| 123 | 
            -
                        else:
         | 
| 124 | 
            -
                            x = x[0]
         | 
| 125 | 
            -
                        
         | 
| 126 | 
            -
                        x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
         | 
| 127 | 
            -
                        
         | 
| 128 | 
            -
                        x = self.projects[i](x)
         | 
| 129 | 
            -
                        x = self.resize_layers[i](x)
         | 
| 130 | 
            -
                        
         | 
| 131 | 
            -
                        out.append(x)
         | 
| 132 | 
            -
                    
         | 
| 133 | 
            -
                    layer_1, layer_2, layer_3, layer_4 = out
         | 
| 134 | 
            -
                    
         | 
| 135 | 
            -
                    layer_1_rn = self.scratch.layer1_rn(layer_1)
         | 
| 136 | 
            -
                    layer_2_rn = self.scratch.layer2_rn(layer_2)
         | 
| 137 | 
            -
                    layer_3_rn = self.scratch.layer3_rn(layer_3)
         | 
| 138 | 
            -
                    layer_4_rn = self.scratch.layer4_rn(layer_4)
         | 
| 139 | 
            -
                    
         | 
| 140 | 
            -
                    path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])        
         | 
| 141 | 
            -
                    path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
         | 
| 142 | 
            -
                    path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
         | 
| 143 | 
            -
                    path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
         | 
| 144 | 
            -
                    
         | 
| 145 | 
            -
                    out = self.scratch.output_conv1(path_1)
         | 
| 146 | 
            -
                    out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
         | 
| 147 | 
            -
                    out = self.scratch.output_conv2(out)
         | 
| 148 | 
            -
                    
         | 
| 149 | 
            -
                    return out
         | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
| 152 | 
            -
            class DepthAnythingV2(nn.Module):
         | 
| 153 | 
            -
                def __init__(
         | 
| 154 | 
            -
                    self, 
         | 
| 155 | 
            -
                    encoder='vitl', 
         | 
| 156 | 
            -
                    features=256, 
         | 
| 157 | 
            -
                    out_channels=[256, 512, 1024, 1024], 
         | 
| 158 | 
            -
                    use_bn=False, 
         | 
| 159 | 
            -
                    use_clstoken=False,
         | 
| 160 | 
            -
                    max_depth=20.0
         | 
| 161 | 
            -
                ):
         | 
| 162 | 
            -
                    super(DepthAnythingV2, self).__init__()
         | 
| 163 | 
            -
                    
         | 
| 164 | 
            -
                    self.intermediate_layer_idx = {
         | 
| 165 | 
            -
                        'vits': [2, 5, 8, 11],
         | 
| 166 | 
            -
                        'vitb': [2, 5, 8, 11], 
         | 
| 167 | 
            -
                        'vitl': [4, 11, 17, 23], 
         | 
| 168 | 
            -
                        'vitg': [9, 19, 29, 39]
         | 
| 169 | 
            -
                    }
         | 
| 170 | 
            -
                    
         | 
| 171 | 
            -
                    self.max_depth = max_depth
         | 
| 172 | 
            -
                    
         | 
| 173 | 
            -
                    self.encoder = encoder
         | 
| 174 | 
            -
                    self.pretrained = DINOv2(model_name=encoder)
         | 
| 175 | 
            -
                    
         | 
| 176 | 
            -
                    self.depth_head = DPTHead(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
         | 
| 177 | 
            -
                
         | 
| 178 | 
            -
                def forward(self, x):
         | 
| 179 | 
            -
                    patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
         | 
| 180 | 
            -
                    
         | 
| 181 | 
            -
                    features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
         | 
| 182 | 
            -
                    
         | 
| 183 | 
            -
                    depth = self.depth_head(features, patch_h, patch_w) * self.max_depth
         | 
| 184 | 
            -
                    
         | 
| 185 | 
            -
                    return depth.squeeze(1)
         | 
| 186 | 
            -
                
         | 
| 187 | 
            -
                @torch.no_grad()
         | 
| 188 | 
            -
                def infer_image(self, raw_image, input_size=518):
         | 
| 189 | 
            -
                    image, (h, w) = self.image2tensor(raw_image, input_size)
         | 
| 190 | 
            -
                    
         | 
| 191 | 
            -
                    depth = self.forward(image)
         | 
| 192 | 
            -
                    
         | 
| 193 | 
            -
                    depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
         | 
| 194 | 
            -
                    
         | 
| 195 | 
            -
                    return depth.cpu().numpy()
         | 
| 196 | 
            -
                
         | 
| 197 | 
            -
                def image2tensor(self, raw_image, input_size=518):        
         | 
| 198 | 
            -
                    transform = Compose([
         | 
| 199 | 
            -
                        Resize(
         | 
| 200 | 
            -
                            width=input_size,
         | 
| 201 | 
            -
                            height=input_size,
         | 
| 202 | 
            -
                            resize_target=False,
         | 
| 203 | 
            -
                            keep_aspect_ratio=True,
         | 
| 204 | 
            -
                            ensure_multiple_of=14,
         | 
| 205 | 
            -
                            resize_method='lower_bound',
         | 
| 206 | 
            -
                            image_interpolation_method=cv2.INTER_CUBIC,
         | 
| 207 | 
            -
                        ),
         | 
| 208 | 
            -
                        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
         | 
| 209 | 
            -
                        PrepareForNet(),
         | 
| 210 | 
            -
                    ])
         | 
| 211 | 
            -
                    
         | 
| 212 | 
            -
                    h, w = raw_image.shape[:2]
         | 
| 213 | 
            -
                    
         | 
| 214 | 
            -
                    image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
         | 
| 215 | 
            -
                    
         | 
| 216 | 
            -
                    image = transform({'image': image})['image']
         | 
| 217 | 
            -
                    image = torch.from_numpy(image).unsqueeze(0)
         | 
| 218 | 
            -
                    
         | 
| 219 | 
            -
                    DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
         | 
| 220 | 
            -
                    image = image.to(DEVICE)
         | 
| 221 | 
            -
                    
         | 
| 222 | 
            -
                    return image, (h, w)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/util/blocks.py
    DELETED
    
    | @@ -1,148 +0,0 @@ | |
| 1 | 
            -
            import torch.nn as nn
         | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
| 4 | 
            -
            def _make_scratch(in_shape, out_shape, groups=1, expand=False):
         | 
| 5 | 
            -
                scratch = nn.Module()
         | 
| 6 | 
            -
             | 
| 7 | 
            -
                out_shape1 = out_shape
         | 
| 8 | 
            -
                out_shape2 = out_shape
         | 
| 9 | 
            -
                out_shape3 = out_shape
         | 
| 10 | 
            -
                if len(in_shape) >= 4:
         | 
| 11 | 
            -
                    out_shape4 = out_shape
         | 
| 12 | 
            -
             | 
| 13 | 
            -
                if expand:
         | 
| 14 | 
            -
                    out_shape1 = out_shape
         | 
| 15 | 
            -
                    out_shape2 = out_shape * 2
         | 
| 16 | 
            -
                    out_shape3 = out_shape * 4
         | 
| 17 | 
            -
                    if len(in_shape) >= 4:
         | 
| 18 | 
            -
                        out_shape4 = out_shape * 8
         | 
| 19 | 
            -
             | 
| 20 | 
            -
                scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
         | 
| 21 | 
            -
                scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
         | 
| 22 | 
            -
                scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
         | 
| 23 | 
            -
                if len(in_shape) >= 4:
         | 
| 24 | 
            -
                    scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
         | 
| 25 | 
            -
             | 
| 26 | 
            -
                return scratch
         | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
            class ResidualConvUnit(nn.Module):
         | 
| 30 | 
            -
                """Residual convolution module.
         | 
| 31 | 
            -
                """
         | 
| 32 | 
            -
             | 
| 33 | 
            -
                def __init__(self, features, activation, bn):
         | 
| 34 | 
            -
                    """Init.
         | 
| 35 | 
            -
             | 
| 36 | 
            -
                    Args:
         | 
| 37 | 
            -
                        features (int): number of features
         | 
| 38 | 
            -
                    """
         | 
| 39 | 
            -
                    super().__init__()
         | 
| 40 | 
            -
             | 
| 41 | 
            -
                    self.bn = bn
         | 
| 42 | 
            -
             | 
| 43 | 
            -
                    self.groups=1
         | 
| 44 | 
            -
             | 
| 45 | 
            -
                    self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
         | 
| 46 | 
            -
                    
         | 
| 47 | 
            -
                    self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
         | 
| 48 | 
            -
             | 
| 49 | 
            -
                    if self.bn == True:
         | 
| 50 | 
            -
                        self.bn1 = nn.BatchNorm2d(features)
         | 
| 51 | 
            -
                        self.bn2 = nn.BatchNorm2d(features)
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                    self.activation = activation
         | 
| 54 | 
            -
             | 
| 55 | 
            -
                    self.skip_add = nn.quantized.FloatFunctional()
         | 
| 56 | 
            -
             | 
| 57 | 
            -
                def forward(self, x):
         | 
| 58 | 
            -
                    """Forward pass.
         | 
| 59 | 
            -
             | 
| 60 | 
            -
                    Args:
         | 
| 61 | 
            -
                        x (tensor): input
         | 
| 62 | 
            -
             | 
| 63 | 
            -
                    Returns:
         | 
| 64 | 
            -
                        tensor: output
         | 
| 65 | 
            -
                    """
         | 
| 66 | 
            -
                    
         | 
| 67 | 
            -
                    out = self.activation(x)
         | 
| 68 | 
            -
                    out = self.conv1(out)
         | 
| 69 | 
            -
                    if self.bn == True:
         | 
| 70 | 
            -
                        out = self.bn1(out)
         | 
| 71 | 
            -
                   
         | 
| 72 | 
            -
                    out = self.activation(out)
         | 
| 73 | 
            -
                    out = self.conv2(out)
         | 
| 74 | 
            -
                    if self.bn == True:
         | 
| 75 | 
            -
                        out = self.bn2(out)
         | 
| 76 | 
            -
             | 
| 77 | 
            -
                    if self.groups > 1:
         | 
| 78 | 
            -
                        out = self.conv_merge(out)
         | 
| 79 | 
            -
             | 
| 80 | 
            -
                    return self.skip_add.add(out, x)
         | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
            class FeatureFusionBlock(nn.Module):
         | 
| 84 | 
            -
                """Feature fusion block.
         | 
| 85 | 
            -
                """
         | 
| 86 | 
            -
             | 
| 87 | 
            -
                def __init__(
         | 
| 88 | 
            -
                    self, 
         | 
| 89 | 
            -
                    features, 
         | 
| 90 | 
            -
                    activation, 
         | 
| 91 | 
            -
                    deconv=False, 
         | 
| 92 | 
            -
                    bn=False, 
         | 
| 93 | 
            -
                    expand=False, 
         | 
| 94 | 
            -
                    align_corners=True,
         | 
| 95 | 
            -
                    size=None
         | 
| 96 | 
            -
                ):
         | 
| 97 | 
            -
                    """Init.
         | 
| 98 | 
            -
                    
         | 
| 99 | 
            -
                    Args:
         | 
| 100 | 
            -
                        features (int): number of features
         | 
| 101 | 
            -
                    """
         | 
| 102 | 
            -
                    super(FeatureFusionBlock, self).__init__()
         | 
| 103 | 
            -
             | 
| 104 | 
            -
                    self.deconv = deconv
         | 
| 105 | 
            -
                    self.align_corners = align_corners
         | 
| 106 | 
            -
             | 
| 107 | 
            -
                    self.groups=1
         | 
| 108 | 
            -
             | 
| 109 | 
            -
                    self.expand = expand
         | 
| 110 | 
            -
                    out_features = features
         | 
| 111 | 
            -
                    if self.expand == True:
         | 
| 112 | 
            -
                        out_features = features // 2
         | 
| 113 | 
            -
                    
         | 
| 114 | 
            -
                    self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
         | 
| 115 | 
            -
             | 
| 116 | 
            -
                    self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
         | 
| 117 | 
            -
                    self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
         | 
| 118 | 
            -
                    
         | 
| 119 | 
            -
                    self.skip_add = nn.quantized.FloatFunctional()
         | 
| 120 | 
            -
             | 
| 121 | 
            -
                    self.size=size
         | 
| 122 | 
            -
             | 
| 123 | 
            -
                def forward(self, *xs, size=None):
         | 
| 124 | 
            -
                    """Forward pass.
         | 
| 125 | 
            -
             | 
| 126 | 
            -
                    Returns:
         | 
| 127 | 
            -
                        tensor: output
         | 
| 128 | 
            -
                    """
         | 
| 129 | 
            -
                    output = xs[0]
         | 
| 130 | 
            -
             | 
| 131 | 
            -
                    if len(xs) == 2:
         | 
| 132 | 
            -
                        res = self.resConfUnit1(xs[1])
         | 
| 133 | 
            -
                        output = self.skip_add.add(output, res)
         | 
| 134 | 
            -
             | 
| 135 | 
            -
                    output = self.resConfUnit2(output)
         | 
| 136 | 
            -
             | 
| 137 | 
            -
                    if (size is None) and (self.size is None):
         | 
| 138 | 
            -
                        modifier = {"scale_factor": 2}
         | 
| 139 | 
            -
                    elif size is None:
         | 
| 140 | 
            -
                        modifier = {"size": self.size}
         | 
| 141 | 
            -
                    else:
         | 
| 142 | 
            -
                        modifier = {"size": size}
         | 
| 143 | 
            -
             | 
| 144 | 
            -
                    output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
         | 
| 145 | 
            -
                    
         | 
| 146 | 
            -
                    output = self.out_conv(output)
         | 
| 147 | 
            -
             | 
| 148 | 
            -
                    return output
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_anything_v2/util/transform.py
    DELETED
    
    | @@ -1,158 +0,0 @@ | |
| 1 | 
            -
            import numpy as np
         | 
| 2 | 
            -
            import cv2
         | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
            class Resize(object):
         | 
| 6 | 
            -
                """Resize sample to given size (width, height).
         | 
| 7 | 
            -
                """
         | 
| 8 | 
            -
             | 
| 9 | 
            -
                def __init__(
         | 
| 10 | 
            -
                    self,
         | 
| 11 | 
            -
                    width,
         | 
| 12 | 
            -
                    height,
         | 
| 13 | 
            -
                    resize_target=True,
         | 
| 14 | 
            -
                    keep_aspect_ratio=False,
         | 
| 15 | 
            -
                    ensure_multiple_of=1,
         | 
| 16 | 
            -
                    resize_method="lower_bound",
         | 
| 17 | 
            -
                    image_interpolation_method=cv2.INTER_AREA,
         | 
| 18 | 
            -
                ):
         | 
| 19 | 
            -
                    """Init.
         | 
| 20 | 
            -
             | 
| 21 | 
            -
                    Args:
         | 
| 22 | 
            -
                        width (int): desired output width
         | 
| 23 | 
            -
                        height (int): desired output height
         | 
| 24 | 
            -
                        resize_target (bool, optional):
         | 
| 25 | 
            -
                            True: Resize the full sample (image, mask, target).
         | 
| 26 | 
            -
                            False: Resize image only.
         | 
| 27 | 
            -
                            Defaults to True.
         | 
| 28 | 
            -
                        keep_aspect_ratio (bool, optional):
         | 
| 29 | 
            -
                            True: Keep the aspect ratio of the input sample.
         | 
| 30 | 
            -
                            Output sample might not have the given width and height, and
         | 
| 31 | 
            -
                            resize behaviour depends on the parameter 'resize_method'.
         | 
| 32 | 
            -
                            Defaults to False.
         | 
| 33 | 
            -
                        ensure_multiple_of (int, optional):
         | 
| 34 | 
            -
                            Output width and height is constrained to be multiple of this parameter.
         | 
| 35 | 
            -
                            Defaults to 1.
         | 
| 36 | 
            -
                        resize_method (str, optional):
         | 
| 37 | 
            -
                            "lower_bound": Output will be at least as large as the given size.
         | 
| 38 | 
            -
                            "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
         | 
| 39 | 
            -
                            "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
         | 
| 40 | 
            -
                            Defaults to "lower_bound".
         | 
| 41 | 
            -
                    """
         | 
| 42 | 
            -
                    self.__width = width
         | 
| 43 | 
            -
                    self.__height = height
         | 
| 44 | 
            -
             | 
| 45 | 
            -
                    self.__resize_target = resize_target
         | 
| 46 | 
            -
                    self.__keep_aspect_ratio = keep_aspect_ratio
         | 
| 47 | 
            -
                    self.__multiple_of = ensure_multiple_of
         | 
| 48 | 
            -
                    self.__resize_method = resize_method
         | 
| 49 | 
            -
                    self.__image_interpolation_method = image_interpolation_method
         | 
| 50 | 
            -
             | 
| 51 | 
            -
                def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
         | 
| 52 | 
            -
                    y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
         | 
| 53 | 
            -
             | 
| 54 | 
            -
                    if max_val is not None and y > max_val:
         | 
| 55 | 
            -
                        y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
         | 
| 56 | 
            -
             | 
| 57 | 
            -
                    if y < min_val:
         | 
| 58 | 
            -
                        y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
         | 
| 59 | 
            -
             | 
| 60 | 
            -
                    return y
         | 
| 61 | 
            -
             | 
| 62 | 
            -
                def get_size(self, width, height):
         | 
| 63 | 
            -
                    # determine new height and width
         | 
| 64 | 
            -
                    scale_height = self.__height / height
         | 
| 65 | 
            -
                    scale_width = self.__width / width
         | 
| 66 | 
            -
             | 
| 67 | 
            -
                    if self.__keep_aspect_ratio:
         | 
| 68 | 
            -
                        if self.__resize_method == "lower_bound":
         | 
| 69 | 
            -
                            # scale such that output size is lower bound
         | 
| 70 | 
            -
                            if scale_width > scale_height:
         | 
| 71 | 
            -
                                # fit width
         | 
| 72 | 
            -
                                scale_height = scale_width
         | 
| 73 | 
            -
                            else:
         | 
| 74 | 
            -
                                # fit height
         | 
| 75 | 
            -
                                scale_width = scale_height
         | 
| 76 | 
            -
                        elif self.__resize_method == "upper_bound":
         | 
| 77 | 
            -
                            # scale such that output size is upper bound
         | 
| 78 | 
            -
                            if scale_width < scale_height:
         | 
| 79 | 
            -
                                # fit width
         | 
| 80 | 
            -
                                scale_height = scale_width
         | 
| 81 | 
            -
                            else:
         | 
| 82 | 
            -
                                # fit height
         | 
| 83 | 
            -
                                scale_width = scale_height
         | 
| 84 | 
            -
                        elif self.__resize_method == "minimal":
         | 
| 85 | 
            -
                            # scale as least as possbile
         | 
| 86 | 
            -
                            if abs(1 - scale_width) < abs(1 - scale_height):
         | 
| 87 | 
            -
                                # fit width
         | 
| 88 | 
            -
                                scale_height = scale_width
         | 
| 89 | 
            -
                            else:
         | 
| 90 | 
            -
                                # fit height
         | 
| 91 | 
            -
                                scale_width = scale_height
         | 
| 92 | 
            -
                        else:
         | 
| 93 | 
            -
                            raise ValueError(f"resize_method {self.__resize_method} not implemented")
         | 
| 94 | 
            -
             | 
| 95 | 
            -
                    if self.__resize_method == "lower_bound":
         | 
| 96 | 
            -
                        new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
         | 
| 97 | 
            -
                        new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
         | 
| 98 | 
            -
                    elif self.__resize_method == "upper_bound":
         | 
| 99 | 
            -
                        new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
         | 
| 100 | 
            -
                        new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
         | 
| 101 | 
            -
                    elif self.__resize_method == "minimal":
         | 
| 102 | 
            -
                        new_height = self.constrain_to_multiple_of(scale_height * height)
         | 
| 103 | 
            -
                        new_width = self.constrain_to_multiple_of(scale_width * width)
         | 
| 104 | 
            -
                    else:
         | 
| 105 | 
            -
                        raise ValueError(f"resize_method {self.__resize_method} not implemented")
         | 
| 106 | 
            -
             | 
| 107 | 
            -
                    return (new_width, new_height)
         | 
| 108 | 
            -
             | 
| 109 | 
            -
                def __call__(self, sample):
         | 
| 110 | 
            -
                    width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
         | 
| 111 | 
            -
                    
         | 
| 112 | 
            -
                    # resize sample
         | 
| 113 | 
            -
                    sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
         | 
| 114 | 
            -
             | 
| 115 | 
            -
                    if self.__resize_target:
         | 
| 116 | 
            -
                        if "depth" in sample:
         | 
| 117 | 
            -
                            sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
         | 
| 118 | 
            -
                            
         | 
| 119 | 
            -
                        if "mask" in sample:
         | 
| 120 | 
            -
                            sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST)
         | 
| 121 | 
            -
                    
         | 
| 122 | 
            -
                    return sample
         | 
| 123 | 
            -
             | 
| 124 | 
            -
             | 
| 125 | 
            -
            class NormalizeImage(object):
         | 
| 126 | 
            -
                """Normlize image by given mean and std.
         | 
| 127 | 
            -
                """
         | 
| 128 | 
            -
             | 
| 129 | 
            -
                def __init__(self, mean, std):
         | 
| 130 | 
            -
                    self.__mean = mean
         | 
| 131 | 
            -
                    self.__std = std
         | 
| 132 | 
            -
             | 
| 133 | 
            -
                def __call__(self, sample):
         | 
| 134 | 
            -
                    sample["image"] = (sample["image"] - self.__mean) / self.__std
         | 
| 135 | 
            -
             | 
| 136 | 
            -
                    return sample
         | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
            class PrepareForNet(object):
         | 
| 140 | 
            -
                """Prepare sample for usage as network input.
         | 
| 141 | 
            -
                """
         | 
| 142 | 
            -
             | 
| 143 | 
            -
                def __init__(self):
         | 
| 144 | 
            -
                    pass
         | 
| 145 | 
            -
             | 
| 146 | 
            -
                def __call__(self, sample):
         | 
| 147 | 
            -
                    image = np.transpose(sample["image"], (2, 0, 1))
         | 
| 148 | 
            -
                    sample["image"] = np.ascontiguousarray(image).astype(np.float32)
         | 
| 149 | 
            -
             | 
| 150 | 
            -
                    if "depth" in sample:
         | 
| 151 | 
            -
                        depth = sample["depth"].astype(np.float32)
         | 
| 152 | 
            -
                        sample["depth"] = np.ascontiguousarray(depth)
         | 
| 153 | 
            -
                    
         | 
| 154 | 
            -
                    if "mask" in sample:
         | 
| 155 | 
            -
                        sample["mask"] = sample["mask"].astype(np.float32)
         | 
| 156 | 
            -
                        sample["mask"] = np.ascontiguousarray(sample["mask"])
         | 
| 157 | 
            -
                    
         | 
| 158 | 
            -
                    return sample
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/depth_to_pointcloud.py
    DELETED
    
    | @@ -1,83 +0,0 @@ | |
| 1 | 
            -
            # Born out of Depth Anything V1 Issue 36
         | 
| 2 | 
            -
            # Make sure you have the necessary libraries
         | 
| 3 | 
            -
            # Code by @1ssb
         | 
| 4 | 
            -
             | 
| 5 | 
            -
            import argparse
         | 
| 6 | 
            -
            import cv2
         | 
| 7 | 
            -
            import glob
         | 
| 8 | 
            -
            import numpy as np
         | 
| 9 | 
            -
            import open3d as o3d
         | 
| 10 | 
            -
            import os
         | 
| 11 | 
            -
            from PIL import Image
         | 
| 12 | 
            -
            import torch
         | 
| 13 | 
            -
             | 
| 14 | 
            -
            from depth_anything_v2.dpt import DepthAnythingV2
         | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
            if __name__ == '__main__':
         | 
| 18 | 
            -
                parser = argparse.ArgumentParser()
         | 
| 19 | 
            -
                parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg'])
         | 
| 20 | 
            -
                parser.add_argument('--load-from', default='', type=str)
         | 
| 21 | 
            -
                parser.add_argument('--max-depth', default=20, type=float)
         | 
| 22 | 
            -
                
         | 
| 23 | 
            -
                parser.add_argument('--img-path', type=str)
         | 
| 24 | 
            -
                parser.add_argument('--outdir', type=str, default='./vis_pointcloud')
         | 
| 25 | 
            -
                
         | 
| 26 | 
            -
                args = parser.parse_args()
         | 
| 27 | 
            -
                
         | 
| 28 | 
            -
                # Global settings
         | 
| 29 | 
            -
                FL = 715.0873
         | 
| 30 | 
            -
                FY = 784 * 0.6
         | 
| 31 | 
            -
                FX = 784 * 0.6
         | 
| 32 | 
            -
                NYU_DATA = False
         | 
| 33 | 
            -
                FINAL_HEIGHT = 518
         | 
| 34 | 
            -
                FINAL_WIDTH = 518
         | 
| 35 | 
            -
                
         | 
| 36 | 
            -
                DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
         | 
| 37 | 
            -
                
         | 
| 38 | 
            -
                model_configs = {
         | 
| 39 | 
            -
                    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
         | 
| 40 | 
            -
                    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
         | 
| 41 | 
            -
                    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 42 | 
            -
                    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
         | 
| 43 | 
            -
                }
         | 
| 44 | 
            -
                
         | 
| 45 | 
            -
                depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
         | 
| 46 | 
            -
                depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu'))
         | 
| 47 | 
            -
                depth_anything = depth_anything.to(DEVICE).eval()
         | 
| 48 | 
            -
                
         | 
| 49 | 
            -
                if os.path.isfile(args.img_path):
         | 
| 50 | 
            -
                    if args.img_path.endswith('txt'):
         | 
| 51 | 
            -
                        with open(args.img_path, 'r') as f:
         | 
| 52 | 
            -
                            filenames = f.read().splitlines()
         | 
| 53 | 
            -
                    else:
         | 
| 54 | 
            -
                        filenames = [args.img_path]
         | 
| 55 | 
            -
                else:
         | 
| 56 | 
            -
                    filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True)
         | 
| 57 | 
            -
                
         | 
| 58 | 
            -
                os.makedirs(args.outdir, exist_ok=True)
         | 
| 59 | 
            -
                
         | 
| 60 | 
            -
                for k, filename in enumerate(filenames):
         | 
| 61 | 
            -
                    print(f'Progress {k+1}/{len(filenames)}: {filename}')
         | 
| 62 | 
            -
                    
         | 
| 63 | 
            -
                    color_image = Image.open(filename).convert('RGB')
         | 
| 64 | 
            -
                    
         | 
| 65 | 
            -
                    image = cv2.imread(filename)
         | 
| 66 | 
            -
                    pred = depth_anything.infer_image(image, FINAL_HEIGHT)
         | 
| 67 | 
            -
                    
         | 
| 68 | 
            -
                    # Resize color image and depth to final size
         | 
| 69 | 
            -
                    resized_color_image = color_image.resize((FINAL_WIDTH, FINAL_HEIGHT), Image.LANCZOS)
         | 
| 70 | 
            -
                    resized_pred = Image.fromarray(pred).resize((FINAL_WIDTH, FINAL_HEIGHT), Image.NEAREST)
         | 
| 71 | 
            -
                    
         | 
| 72 | 
            -
                    focal_length_x, focal_length_y = (FX, FY) if not NYU_DATA else (FL, FL)
         | 
| 73 | 
            -
                    x, y = np.meshgrid(np.arange(FINAL_WIDTH), np.arange(FINAL_HEIGHT))
         | 
| 74 | 
            -
                    x = (x - FINAL_WIDTH / 2) / focal_length_x
         | 
| 75 | 
            -
                    y = (y - FINAL_HEIGHT / 2) / focal_length_y
         | 
| 76 | 
            -
                    z = np.array(resized_pred)
         | 
| 77 | 
            -
                    points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3)
         | 
| 78 | 
            -
                    colors = np.array(resized_color_image).reshape(-1, 3) / 255.0
         | 
| 79 | 
            -
                    
         | 
| 80 | 
            -
                    pcd = o3d.geometry.PointCloud()
         | 
| 81 | 
            -
                    pcd.points = o3d.utility.Vector3dVector(points)
         | 
| 82 | 
            -
                    pcd.colors = o3d.utility.Vector3dVector(colors)
         | 
| 83 | 
            -
                    o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/dist_train.sh
    DELETED
    
    | @@ -1,26 +0,0 @@ | |
| 1 | 
            -
            #!/bin/bash
         | 
| 2 | 
            -
            now=$(date +"%Y%m%d_%H%M%S")
         | 
| 3 | 
            -
             | 
| 4 | 
            -
            epoch=120
         | 
| 5 | 
            -
            bs=4
         | 
| 6 | 
            -
            gpus=8
         | 
| 7 | 
            -
            lr=0.000005
         | 
| 8 | 
            -
            encoder=vitl
         | 
| 9 | 
            -
            dataset=hypersim # vkitti
         | 
| 10 | 
            -
            img_size=518
         | 
| 11 | 
            -
            min_depth=0.001
         | 
| 12 | 
            -
            max_depth=20 # 80 for virtual kitti
         | 
| 13 | 
            -
            pretrained_from=../checkpoints/depth_anything_v2_${encoder}.pth
         | 
| 14 | 
            -
            save_path=exp/hypersim # exp/vkitti
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            mkdir -p $save_path
         | 
| 17 | 
            -
             | 
| 18 | 
            -
            python3 -m torch.distributed.launch \
         | 
| 19 | 
            -
                --nproc_per_node=$gpus \
         | 
| 20 | 
            -
                --nnodes 1 \
         | 
| 21 | 
            -
                --node_rank=0 \
         | 
| 22 | 
            -
                --master_addr=localhost \
         | 
| 23 | 
            -
                --master_port=20596 \
         | 
| 24 | 
            -
                train.py --epoch $epoch --encoder $encoder --bs $bs --lr $lr --save-path $save_path --dataset $dataset \
         | 
| 25 | 
            -
                --img-size $img_size --min-depth $min_depth --max-depth $max_depth --pretrained-from $pretrained_from \
         | 
| 26 | 
            -
                --port 20596 2>&1 | tee -a $save_path/$now.log
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/requirements.txt
    DELETED
    
    | @@ -1,5 +0,0 @@ | |
| 1 | 
            -
            matplotlib
         | 
| 2 | 
            -
            opencv-python
         | 
| 3 | 
            -
            open3d
         | 
| 4 | 
            -
            torch
         | 
| 5 | 
            -
            torchvision
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/run.py
    DELETED
    
    | @@ -1,81 +0,0 @@ | |
| 1 | 
            -
            import argparse
         | 
| 2 | 
            -
            import cv2
         | 
| 3 | 
            -
            import glob
         | 
| 4 | 
            -
            import matplotlib
         | 
| 5 | 
            -
            import numpy as np
         | 
| 6 | 
            -
            import os
         | 
| 7 | 
            -
            import torch
         | 
| 8 | 
            -
             | 
| 9 | 
            -
            from depth_anything_v2.dpt import DepthAnythingV2
         | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
            if __name__ == '__main__':
         | 
| 13 | 
            -
                parser = argparse.ArgumentParser(description='Depth Anything V2 Metric Depth Estimation')
         | 
| 14 | 
            -
                
         | 
| 15 | 
            -
                parser.add_argument('--img-path', type=str)
         | 
| 16 | 
            -
                parser.add_argument('--input-size', type=int, default=518)
         | 
| 17 | 
            -
                parser.add_argument('--outdir', type=str, default='./vis_depth')
         | 
| 18 | 
            -
                
         | 
| 19 | 
            -
                parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
         | 
| 20 | 
            -
                parser.add_argument('--load-from', type=str, default='checkpoints/depth_anything_v2_metric_hypersim_vitl.pth')
         | 
| 21 | 
            -
                parser.add_argument('--max-depth', type=float, default=20)
         | 
| 22 | 
            -
                
         | 
| 23 | 
            -
                parser.add_argument('--save-numpy', dest='save_numpy', action='store_true', help='save the model raw output')
         | 
| 24 | 
            -
                parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction')
         | 
| 25 | 
            -
                parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette')
         | 
| 26 | 
            -
                
         | 
| 27 | 
            -
                args = parser.parse_args()
         | 
| 28 | 
            -
                
         | 
| 29 | 
            -
                DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
         | 
| 30 | 
            -
                
         | 
| 31 | 
            -
                model_configs = {
         | 
| 32 | 
            -
                    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
         | 
| 33 | 
            -
                    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
         | 
| 34 | 
            -
                    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 35 | 
            -
                    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
         | 
| 36 | 
            -
                }
         | 
| 37 | 
            -
                
         | 
| 38 | 
            -
                depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
         | 
| 39 | 
            -
                depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu'))
         | 
| 40 | 
            -
                depth_anything = depth_anything.to(DEVICE).eval()
         | 
| 41 | 
            -
                
         | 
| 42 | 
            -
                if os.path.isfile(args.img_path):
         | 
| 43 | 
            -
                    if args.img_path.endswith('txt'):
         | 
| 44 | 
            -
                        with open(args.img_path, 'r') as f:
         | 
| 45 | 
            -
                            filenames = f.read().splitlines()
         | 
| 46 | 
            -
                    else:
         | 
| 47 | 
            -
                        filenames = [args.img_path]
         | 
| 48 | 
            -
                else:
         | 
| 49 | 
            -
                    filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True)
         | 
| 50 | 
            -
                
         | 
| 51 | 
            -
                os.makedirs(args.outdir, exist_ok=True)
         | 
| 52 | 
            -
                
         | 
| 53 | 
            -
                cmap = matplotlib.colormaps.get_cmap('Spectral')
         | 
| 54 | 
            -
                
         | 
| 55 | 
            -
                for k, filename in enumerate(filenames):
         | 
| 56 | 
            -
                    print(f'Progress {k+1}/{len(filenames)}: {filename}')
         | 
| 57 | 
            -
                    
         | 
| 58 | 
            -
                    raw_image = cv2.imread(filename)
         | 
| 59 | 
            -
                    
         | 
| 60 | 
            -
                    depth = depth_anything.infer_image(raw_image, args.input_size)
         | 
| 61 | 
            -
                    
         | 
| 62 | 
            -
                    if args.save_numpy:
         | 
| 63 | 
            -
                        output_path = os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '_raw_depth_meter.npy')
         | 
| 64 | 
            -
                        np.save(output_path, depth)
         | 
| 65 | 
            -
                    
         | 
| 66 | 
            -
                    depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
         | 
| 67 | 
            -
                    depth = depth.astype(np.uint8)
         | 
| 68 | 
            -
                    
         | 
| 69 | 
            -
                    if args.grayscale:
         | 
| 70 | 
            -
                        depth = np.repeat(depth[..., np.newaxis], 3, axis=-1)
         | 
| 71 | 
            -
                    else:
         | 
| 72 | 
            -
                        depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8)
         | 
| 73 | 
            -
                    
         | 
| 74 | 
            -
                    output_path = os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + '.png')
         | 
| 75 | 
            -
                    if args.pred_only:
         | 
| 76 | 
            -
                        cv2.imwrite(output_path, depth)
         | 
| 77 | 
            -
                    else:
         | 
| 78 | 
            -
                        split_region = np.ones((raw_image.shape[0], 50, 3), dtype=np.uint8) * 255
         | 
| 79 | 
            -
                        combined_result = cv2.hconcat([raw_image, split_region, depth])
         | 
| 80 | 
            -
                        
         | 
| 81 | 
            -
                        cv2.imwrite(output_path, combined_result)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/train.py
    DELETED
    
    | @@ -1,212 +0,0 @@ | |
| 1 | 
            -
            import argparse
         | 
| 2 | 
            -
            import logging
         | 
| 3 | 
            -
            import os
         | 
| 4 | 
            -
            import pprint
         | 
| 5 | 
            -
            import random
         | 
| 6 | 
            -
             | 
| 7 | 
            -
            import warnings
         | 
| 8 | 
            -
            import numpy as np
         | 
| 9 | 
            -
            import torch
         | 
| 10 | 
            -
            import torch.backends.cudnn as cudnn
         | 
| 11 | 
            -
            import torch.distributed as dist
         | 
| 12 | 
            -
            from torch.utils.data import DataLoader
         | 
| 13 | 
            -
            from torch.optim import AdamW
         | 
| 14 | 
            -
            import torch.nn.functional as F
         | 
| 15 | 
            -
            from torch.utils.tensorboard import SummaryWriter
         | 
| 16 | 
            -
             | 
| 17 | 
            -
            from dataset.hypersim import Hypersim
         | 
| 18 | 
            -
            from dataset.kitti import KITTI
         | 
| 19 | 
            -
            from dataset.vkitti2 import VKITTI2
         | 
| 20 | 
            -
            from depth_anything_v2.dpt import DepthAnythingV2
         | 
| 21 | 
            -
            from util.dist_helper import setup_distributed
         | 
| 22 | 
            -
            from util.loss import SiLogLoss
         | 
| 23 | 
            -
            from util.metric import eval_depth
         | 
| 24 | 
            -
            from util.utils import init_log
         | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
            parser = argparse.ArgumentParser(description='Depth Anything V2 for Metric Depth Estimation')
         | 
| 28 | 
            -
             | 
| 29 | 
            -
            parser.add_argument('--encoder', default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
         | 
| 30 | 
            -
            parser.add_argument('--dataset', default='hypersim', choices=['hypersim', 'vkitti'])
         | 
| 31 | 
            -
            parser.add_argument('--img-size', default=518, type=int)
         | 
| 32 | 
            -
            parser.add_argument('--min-depth', default=0.001, type=float)
         | 
| 33 | 
            -
            parser.add_argument('--max-depth', default=20, type=float)
         | 
| 34 | 
            -
            parser.add_argument('--epochs', default=40, type=int)
         | 
| 35 | 
            -
            parser.add_argument('--bs', default=2, type=int)
         | 
| 36 | 
            -
            parser.add_argument('--lr', default=0.000005, type=float)
         | 
| 37 | 
            -
            parser.add_argument('--pretrained-from', type=str)
         | 
| 38 | 
            -
            parser.add_argument('--save-path', type=str, required=True)
         | 
| 39 | 
            -
            parser.add_argument('--local-rank', default=0, type=int)
         | 
| 40 | 
            -
            parser.add_argument('--port', default=None, type=int)
         | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
            def main():
         | 
| 44 | 
            -
                args = parser.parse_args()
         | 
| 45 | 
            -
                
         | 
| 46 | 
            -
                warnings.simplefilter('ignore', np.RankWarning)
         | 
| 47 | 
            -
                
         | 
| 48 | 
            -
                logger = init_log('global', logging.INFO)
         | 
| 49 | 
            -
                logger.propagate = 0
         | 
| 50 | 
            -
                
         | 
| 51 | 
            -
                rank, world_size = setup_distributed(port=args.port)
         | 
| 52 | 
            -
                
         | 
| 53 | 
            -
                if rank == 0:
         | 
| 54 | 
            -
                    all_args = {**vars(args), 'ngpus': world_size}
         | 
| 55 | 
            -
                    logger.info('{}\n'.format(pprint.pformat(all_args)))
         | 
| 56 | 
            -
                    writer = SummaryWriter(args.save_path)
         | 
| 57 | 
            -
                
         | 
| 58 | 
            -
                cudnn.enabled = True
         | 
| 59 | 
            -
                cudnn.benchmark = True
         | 
| 60 | 
            -
                
         | 
| 61 | 
            -
                size = (args.img_size, args.img_size)
         | 
| 62 | 
            -
                if args.dataset == 'hypersim':
         | 
| 63 | 
            -
                    trainset = Hypersim('dataset/splits/hypersim/train.txt', 'train', size=size)
         | 
| 64 | 
            -
                elif args.dataset == 'vkitti':
         | 
| 65 | 
            -
                    trainset = VKITTI2('dataset/splits/vkitti2/train.txt', 'train', size=size)
         | 
| 66 | 
            -
                else:
         | 
| 67 | 
            -
                    raise NotImplementedError
         | 
| 68 | 
            -
                trainsampler = torch.utils.data.distributed.DistributedSampler(trainset)
         | 
| 69 | 
            -
                trainloader = DataLoader(trainset, batch_size=args.bs, pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler)
         | 
| 70 | 
            -
                
         | 
| 71 | 
            -
                if args.dataset == 'hypersim':
         | 
| 72 | 
            -
                    valset = Hypersim('dataset/splits/hypersim/val.txt', 'val', size=size)
         | 
| 73 | 
            -
                elif args.dataset == 'vkitti':
         | 
| 74 | 
            -
                    valset = KITTI('dataset/splits/kitti/val.txt', 'val', size=size)
         | 
| 75 | 
            -
                else:
         | 
| 76 | 
            -
                    raise NotImplementedError
         | 
| 77 | 
            -
                valsampler = torch.utils.data.distributed.DistributedSampler(valset)
         | 
| 78 | 
            -
                valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=4, drop_last=True, sampler=valsampler)
         | 
| 79 | 
            -
                
         | 
| 80 | 
            -
                local_rank = int(os.environ["LOCAL_RANK"])
         | 
| 81 | 
            -
                
         | 
| 82 | 
            -
                model_configs = {
         | 
| 83 | 
            -
                    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
         | 
| 84 | 
            -
                    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
         | 
| 85 | 
            -
                    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 86 | 
            -
                    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
         | 
| 87 | 
            -
                }
         | 
| 88 | 
            -
                model = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
         | 
| 89 | 
            -
                
         | 
| 90 | 
            -
                if args.pretrained_from:
         | 
| 91 | 
            -
                    model.load_state_dict({k: v for k, v in torch.load(args.pretrained_from, map_location='cpu').items() if 'pretrained' in k}, strict=False)
         | 
| 92 | 
            -
                
         | 
| 93 | 
            -
                model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
         | 
| 94 | 
            -
                model.cuda(local_rank)
         | 
| 95 | 
            -
                model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False,
         | 
| 96 | 
            -
                                                                  output_device=local_rank, find_unused_parameters=True)
         | 
| 97 | 
            -
                
         | 
| 98 | 
            -
                criterion = SiLogLoss().cuda(local_rank)
         | 
| 99 | 
            -
                
         | 
| 100 | 
            -
                optimizer = AdamW([{'params': [param for name, param in model.named_parameters() if 'pretrained' in name], 'lr': args.lr},
         | 
| 101 | 
            -
                                   {'params': [param for name, param in model.named_parameters() if 'pretrained' not in name], 'lr': args.lr * 10.0}],
         | 
| 102 | 
            -
                                  lr=args.lr, betas=(0.9, 0.999), weight_decay=0.01)
         | 
| 103 | 
            -
                
         | 
| 104 | 
            -
                total_iters = args.epochs * len(trainloader)
         | 
| 105 | 
            -
                
         | 
| 106 | 
            -
                previous_best = {'d1': 0, 'd2': 0, 'd3': 0, 'abs_rel': 100, 'sq_rel': 100, 'rmse': 100, 'rmse_log': 100, 'log10': 100, 'silog': 100}
         | 
| 107 | 
            -
                
         | 
| 108 | 
            -
                for epoch in range(args.epochs):
         | 
| 109 | 
            -
                    if rank == 0:
         | 
| 110 | 
            -
                        logger.info('===========> Epoch: {:}/{:}, d1: {:.3f}, d2: {:.3f}, d3: {:.3f}'.format(epoch, args.epochs, previous_best['d1'], previous_best['d2'], previous_best['d3']))
         | 
| 111 | 
            -
                        logger.info('===========> Epoch: {:}/{:}, abs_rel: {:.3f}, sq_rel: {:.3f}, rmse: {:.3f}, rmse_log: {:.3f}, '
         | 
| 112 | 
            -
                                    'log10: {:.3f}, silog: {:.3f}'.format(
         | 
| 113 | 
            -
                                        epoch, args.epochs, previous_best['abs_rel'], previous_best['sq_rel'], previous_best['rmse'], 
         | 
| 114 | 
            -
                                        previous_best['rmse_log'], previous_best['log10'], previous_best['silog']))
         | 
| 115 | 
            -
                    
         | 
| 116 | 
            -
                    trainloader.sampler.set_epoch(epoch + 1)
         | 
| 117 | 
            -
                    
         | 
| 118 | 
            -
                    model.train()
         | 
| 119 | 
            -
                    total_loss = 0
         | 
| 120 | 
            -
                    
         | 
| 121 | 
            -
                    for i, sample in enumerate(trainloader):
         | 
| 122 | 
            -
                        optimizer.zero_grad()
         | 
| 123 | 
            -
                        
         | 
| 124 | 
            -
                        img, depth, valid_mask = sample['image'].cuda(), sample['depth'].cuda(), sample['valid_mask'].cuda()
         | 
| 125 | 
            -
                        
         | 
| 126 | 
            -
                        if random.random() < 0.5:
         | 
| 127 | 
            -
                            img = img.flip(-1)
         | 
| 128 | 
            -
                            depth = depth.flip(-1)
         | 
| 129 | 
            -
                            valid_mask = valid_mask.flip(-1)
         | 
| 130 | 
            -
                        
         | 
| 131 | 
            -
                        pred = model(img)
         | 
| 132 | 
            -
                        
         | 
| 133 | 
            -
                        loss = criterion(pred, depth, (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth))
         | 
| 134 | 
            -
                        
         | 
| 135 | 
            -
                        loss.backward()
         | 
| 136 | 
            -
                        optimizer.step()
         | 
| 137 | 
            -
                        
         | 
| 138 | 
            -
                        total_loss += loss.item()
         | 
| 139 | 
            -
                        
         | 
| 140 | 
            -
                        iters = epoch * len(trainloader) + i
         | 
| 141 | 
            -
                        
         | 
| 142 | 
            -
                        lr = args.lr * (1 - iters / total_iters) ** 0.9
         | 
| 143 | 
            -
                        
         | 
| 144 | 
            -
                        optimizer.param_groups[0]["lr"] = lr
         | 
| 145 | 
            -
                        optimizer.param_groups[1]["lr"] = lr * 10.0
         | 
| 146 | 
            -
                        
         | 
| 147 | 
            -
                        if rank == 0:
         | 
| 148 | 
            -
                            writer.add_scalar('train/loss', loss.item(), iters)
         | 
| 149 | 
            -
                        
         | 
| 150 | 
            -
                        if rank == 0 and i % 100 == 0:
         | 
| 151 | 
            -
                            logger.info('Iter: {}/{}, LR: {:.7f}, Loss: {:.3f}'.format(i, len(trainloader), optimizer.param_groups[0]['lr'], loss.item()))
         | 
| 152 | 
            -
                    
         | 
| 153 | 
            -
                    model.eval()
         | 
| 154 | 
            -
                    
         | 
| 155 | 
            -
                    results = {'d1': torch.tensor([0.0]).cuda(), 'd2': torch.tensor([0.0]).cuda(), 'd3': torch.tensor([0.0]).cuda(), 
         | 
| 156 | 
            -
                               'abs_rel': torch.tensor([0.0]).cuda(), 'sq_rel': torch.tensor([0.0]).cuda(), 'rmse': torch.tensor([0.0]).cuda(), 
         | 
| 157 | 
            -
                               'rmse_log': torch.tensor([0.0]).cuda(), 'log10': torch.tensor([0.0]).cuda(), 'silog': torch.tensor([0.0]).cuda()}
         | 
| 158 | 
            -
                    nsamples = torch.tensor([0.0]).cuda()
         | 
| 159 | 
            -
                    
         | 
| 160 | 
            -
                    for i, sample in enumerate(valloader):
         | 
| 161 | 
            -
                        
         | 
| 162 | 
            -
                        img, depth, valid_mask = sample['image'].cuda().float(), sample['depth'].cuda()[0], sample['valid_mask'].cuda()[0]
         | 
| 163 | 
            -
                        
         | 
| 164 | 
            -
                        with torch.no_grad():
         | 
| 165 | 
            -
                            pred = model(img)
         | 
| 166 | 
            -
                            pred = F.interpolate(pred[:, None], depth.shape[-2:], mode='bilinear', align_corners=True)[0, 0]
         | 
| 167 | 
            -
                        
         | 
| 168 | 
            -
                        valid_mask = (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth)
         | 
| 169 | 
            -
                        
         | 
| 170 | 
            -
                        if valid_mask.sum() < 10:
         | 
| 171 | 
            -
                            continue
         | 
| 172 | 
            -
                        
         | 
| 173 | 
            -
                        cur_results = eval_depth(pred[valid_mask], depth[valid_mask])
         | 
| 174 | 
            -
                        
         | 
| 175 | 
            -
                        for k in results.keys():
         | 
| 176 | 
            -
                            results[k] += cur_results[k]
         | 
| 177 | 
            -
                        nsamples += 1
         | 
| 178 | 
            -
                    
         | 
| 179 | 
            -
                    torch.distributed.barrier()
         | 
| 180 | 
            -
                    
         | 
| 181 | 
            -
                    for k in results.keys():
         | 
| 182 | 
            -
                        dist.reduce(results[k], dst=0)
         | 
| 183 | 
            -
                    dist.reduce(nsamples, dst=0)
         | 
| 184 | 
            -
                    
         | 
| 185 | 
            -
                    if rank == 0:
         | 
| 186 | 
            -
                        logger.info('==========================================================================================')
         | 
| 187 | 
            -
                        logger.info('{:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}'.format(*tuple(results.keys())))
         | 
| 188 | 
            -
                        logger.info('{:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}'.format(*tuple([(v / nsamples).item() for v in results.values()])))
         | 
| 189 | 
            -
                        logger.info('==========================================================================================')
         | 
| 190 | 
            -
                        print()
         | 
| 191 | 
            -
                        
         | 
| 192 | 
            -
                        for name, metric in results.items():
         | 
| 193 | 
            -
                            writer.add_scalar(f'eval/{name}', (metric / nsamples).item(), epoch)
         | 
| 194 | 
            -
                    
         | 
| 195 | 
            -
                    for k in results.keys():
         | 
| 196 | 
            -
                        if k in ['d1', 'd2', 'd3']:
         | 
| 197 | 
            -
                            previous_best[k] = max(previous_best[k], (results[k] / nsamples).item())
         | 
| 198 | 
            -
                        else:
         | 
| 199 | 
            -
                            previous_best[k] = min(previous_best[k], (results[k] / nsamples).item())
         | 
| 200 | 
            -
                    
         | 
| 201 | 
            -
                    if rank == 0:
         | 
| 202 | 
            -
                        checkpoint = {
         | 
| 203 | 
            -
                            'model': model.state_dict(),
         | 
| 204 | 
            -
                            'optimizer': optimizer.state_dict(),
         | 
| 205 | 
            -
                            'epoch': epoch,
         | 
| 206 | 
            -
                            'previous_best': previous_best,
         | 
| 207 | 
            -
                        }
         | 
| 208 | 
            -
                        torch.save(checkpoint, os.path.join(args.save_path, 'latest.pth'))
         | 
| 209 | 
            -
             | 
| 210 | 
            -
             | 
| 211 | 
            -
            if __name__ == '__main__':
         | 
| 212 | 
            -
                main()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/util/dist_helper.py
    DELETED
    
    | @@ -1,41 +0,0 @@ | |
| 1 | 
            -
            import os
         | 
| 2 | 
            -
            import subprocess
         | 
| 3 | 
            -
             | 
| 4 | 
            -
            import torch
         | 
| 5 | 
            -
            import torch.distributed as dist
         | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
            def setup_distributed(backend="nccl", port=None):
         | 
| 9 | 
            -
                """AdaHessian Optimizer
         | 
| 10 | 
            -
                Lifted from https://github.com/BIGBALLON/distribuuuu/blob/master/distribuuuu/utils.py
         | 
| 11 | 
            -
                Originally licensed MIT, Copyright (c) 2020 Wei Li
         | 
| 12 | 
            -
                """
         | 
| 13 | 
            -
                num_gpus = torch.cuda.device_count()
         | 
| 14 | 
            -
             | 
| 15 | 
            -
                if "SLURM_JOB_ID" in os.environ:
         | 
| 16 | 
            -
                    rank = int(os.environ["SLURM_PROCID"])
         | 
| 17 | 
            -
                    world_size = int(os.environ["SLURM_NTASKS"])
         | 
| 18 | 
            -
                    node_list = os.environ["SLURM_NODELIST"]
         | 
| 19 | 
            -
                    addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
         | 
| 20 | 
            -
                    # specify master port
         | 
| 21 | 
            -
                    if port is not None:
         | 
| 22 | 
            -
                        os.environ["MASTER_PORT"] = str(port)
         | 
| 23 | 
            -
                    elif "MASTER_PORT" not in os.environ:
         | 
| 24 | 
            -
                        os.environ["MASTER_PORT"] = "10685"
         | 
| 25 | 
            -
                    if "MASTER_ADDR" not in os.environ:
         | 
| 26 | 
            -
                        os.environ["MASTER_ADDR"] = addr
         | 
| 27 | 
            -
                    os.environ["WORLD_SIZE"] = str(world_size)
         | 
| 28 | 
            -
                    os.environ["LOCAL_RANK"] = str(rank % num_gpus)
         | 
| 29 | 
            -
                    os.environ["RANK"] = str(rank)
         | 
| 30 | 
            -
                else:
         | 
| 31 | 
            -
                    rank = int(os.environ["RANK"])
         | 
| 32 | 
            -
                    world_size = int(os.environ["WORLD_SIZE"])
         | 
| 33 | 
            -
             | 
| 34 | 
            -
                torch.cuda.set_device(rank % num_gpus)
         | 
| 35 | 
            -
             | 
| 36 | 
            -
                dist.init_process_group(
         | 
| 37 | 
            -
                    backend=backend,
         | 
| 38 | 
            -
                    world_size=world_size,
         | 
| 39 | 
            -
                    rank=rank,
         | 
| 40 | 
            -
                )
         | 
| 41 | 
            -
                return rank, world_size
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/util/loss.py
    DELETED
    
    | @@ -1,16 +0,0 @@ | |
| 1 | 
            -
            import torch
         | 
| 2 | 
            -
            from torch import nn
         | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
            class SiLogLoss(nn.Module):
         | 
| 6 | 
            -
                def __init__(self, lambd=0.5):
         | 
| 7 | 
            -
                    super().__init__()
         | 
| 8 | 
            -
                    self.lambd = lambd
         | 
| 9 | 
            -
             | 
| 10 | 
            -
                def forward(self, pred, target, valid_mask):
         | 
| 11 | 
            -
                    valid_mask = valid_mask.detach()
         | 
| 12 | 
            -
                    diff_log = torch.log(target[valid_mask]) - torch.log(pred[valid_mask])
         | 
| 13 | 
            -
                    loss = torch.sqrt(torch.pow(diff_log, 2).mean() -
         | 
| 14 | 
            -
                                      self.lambd * torch.pow(diff_log.mean(), 2))
         | 
| 15 | 
            -
             | 
| 16 | 
            -
                    return loss
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/util/metric.py
    DELETED
    
    | @@ -1,26 +0,0 @@ | |
| 1 | 
            -
            import torch
         | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
| 4 | 
            -
            def eval_depth(pred, target):
         | 
| 5 | 
            -
                assert pred.shape == target.shape
         | 
| 6 | 
            -
             | 
| 7 | 
            -
                thresh = torch.max((target / pred), (pred / target))
         | 
| 8 | 
            -
             | 
| 9 | 
            -
                d1 = torch.sum(thresh < 1.25).float() / len(thresh)
         | 
| 10 | 
            -
                d2 = torch.sum(thresh < 1.25 ** 2).float() / len(thresh)
         | 
| 11 | 
            -
                d3 = torch.sum(thresh < 1.25 ** 3).float() / len(thresh)
         | 
| 12 | 
            -
             | 
| 13 | 
            -
                diff = pred - target
         | 
| 14 | 
            -
                diff_log = torch.log(pred) - torch.log(target)
         | 
| 15 | 
            -
             | 
| 16 | 
            -
                abs_rel = torch.mean(torch.abs(diff) / target)
         | 
| 17 | 
            -
                sq_rel = torch.mean(torch.pow(diff, 2) / target)
         | 
| 18 | 
            -
             | 
| 19 | 
            -
                rmse = torch.sqrt(torch.mean(torch.pow(diff, 2)))
         | 
| 20 | 
            -
                rmse_log = torch.sqrt(torch.mean(torch.pow(diff_log , 2)))
         | 
| 21 | 
            -
             | 
| 22 | 
            -
                log10 = torch.mean(torch.abs(torch.log10(pred) - torch.log10(target)))
         | 
| 23 | 
            -
                silog = torch.sqrt(torch.pow(diff_log, 2).mean() - 0.5 * torch.pow(diff_log.mean(), 2))
         | 
| 24 | 
            -
             | 
| 25 | 
            -
                return {'d1': d1.item(), 'd2': d2.item(), 'd3': d3.item(), 'abs_rel': abs_rel.item(), 'sq_rel': sq_rel.item(), 
         | 
| 26 | 
            -
                        'rmse': rmse.item(), 'rmse_log': rmse_log.item(), 'log10':log10.item(), 'silog':silog.item()}
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
    	
        metric_depth/util/utils.py
    DELETED
    
    | @@ -1,26 +0,0 @@ | |
| 1 | 
            -
            import os
         | 
| 2 | 
            -
            import re
         | 
| 3 | 
            -
            import numpy as np
         | 
| 4 | 
            -
            import logging
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            logs = set()
         | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
            def init_log(name, level=logging.INFO):
         | 
| 10 | 
            -
                if (name, level) in logs:
         | 
| 11 | 
            -
                    return
         | 
| 12 | 
            -
                logs.add((name, level))
         | 
| 13 | 
            -
                logger = logging.getLogger(name)
         | 
| 14 | 
            -
                logger.setLevel(level)
         | 
| 15 | 
            -
                ch = logging.StreamHandler()
         | 
| 16 | 
            -
                ch.setLevel(level)
         | 
| 17 | 
            -
                if "SLURM_PROCID" in os.environ:
         | 
| 18 | 
            -
                    rank = int(os.environ["SLURM_PROCID"])
         | 
| 19 | 
            -
                    logger.addFilter(lambda record: rank == 0)
         | 
| 20 | 
            -
                else:
         | 
| 21 | 
            -
                    rank = 0
         | 
| 22 | 
            -
                format_str = "[%(asctime)s][%(levelname)8s] %(message)s"
         | 
| 23 | 
            -
                formatter = logging.Formatter(format_str)
         | 
| 24 | 
            -
                ch.setFormatter(formatter)
         | 
| 25 | 
            -
                logger.addHandler(ch)
         | 
| 26 | 
            -
                return logger
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
