Spaces:
Runtime error
Runtime error
Commit
·
ce7d026
1
Parent(s):
297a2c6
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,37 +5,25 @@ import sahi.predict
|
|
| 5 |
import sahi.slicing
|
| 6 |
from PIL import Image
|
| 7 |
import numpy
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
IMAGE_SIZE = 640
|
| 10 |
|
| 11 |
-
|
| 12 |
-
sahi.utils.file.download_from_url(
|
| 13 |
-
"https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg",
|
| 14 |
-
"apple_tree.jpg",
|
| 15 |
-
)
|
| 16 |
-
sahi.utils.file.download_from_url(
|
| 17 |
-
"https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg",
|
| 18 |
-
"highway.jpg",
|
| 19 |
-
)
|
| 20 |
|
| 21 |
-
sahi.utils.file.download_from_url(
|
| 22 |
-
"https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg",
|
| 23 |
-
"highway2.jpg",
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
sahi.utils.file.download_from_url(
|
| 27 |
-
"https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg",
|
| 28 |
-
"highway3.jpg",
|
| 29 |
-
)
|
| 30 |
|
|
|
|
| 31 |
|
| 32 |
# Model
|
| 33 |
model = AutoDetectionModel.from_pretrained(
|
| 34 |
-
model_type="yolov5", model_path=
|
| 35 |
)
|
| 36 |
|
| 37 |
|
| 38 |
def sahi_yolo_inference(
|
|
|
|
| 39 |
image,
|
| 40 |
slice_height=512,
|
| 41 |
slice_width=512,
|
|
@@ -47,34 +35,26 @@ def sahi_yolo_inference(
|
|
| 47 |
postprocess_class_agnostic=False,
|
| 48 |
):
|
| 49 |
|
| 50 |
-
image_width, image_height = image.size
|
| 51 |
-
sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
)
|
| 60 |
-
if len(sliced_bboxes) > 60:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
|
| 71 |
-
image=numpy.array(image),
|
| 72 |
-
object_prediction_list=prediction_result_1.object_prediction_list,
|
| 73 |
-
)
|
| 74 |
-
output_1 = Image.fromarray(visual_result_1["image"])
|
| 75 |
-
|
| 76 |
-
# sliced inference
|
| 77 |
-
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
| 78 |
image=image,
|
| 79 |
detection_model=model,
|
| 80 |
slice_height=int(slice_height),
|
|
@@ -85,18 +65,33 @@ def sahi_yolo_inference(
|
|
| 85 |
postprocess_match_metric=postprocess_match_metric,
|
| 86 |
postprocess_match_threshold=postprocess_match_threshold,
|
| 87 |
postprocess_class_agnostic=postprocess_class_agnostic,
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
output_2 = Image.fromarray(visual_result_2["image"])
|
| 95 |
|
| 96 |
-
return
|
| 97 |
|
| 98 |
|
| 99 |
inputs = [
|
|
|
|
| 100 |
gr.inputs.Image(type="pil", label="Original Image"),
|
| 101 |
gr.inputs.Number(default=512, label="slice_height"),
|
| 102 |
gr.inputs.Number(default=512, label="slice_width"),
|
|
@@ -116,8 +111,7 @@ inputs = [
|
|
| 116 |
]
|
| 117 |
|
| 118 |
outputs = [
|
| 119 |
-
gr.outputs.Image(type="pil", label="
|
| 120 |
-
gr.outputs.Image(type="pil", label="YOLOv5s + SAHI"),
|
| 121 |
]
|
| 122 |
|
| 123 |
title = "Small Object Detection with SAHI + YOLOv5"
|
|
|
|
| 5 |
import sahi.slicing
|
| 6 |
from PIL import Image
|
| 7 |
import numpy
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
|
| 12 |
IMAGE_SIZE = 640
|
| 13 |
|
| 14 |
+
model_path=hf_hub_download("kadirnar/deprem_model_v1", filename="last.pt",revision="main")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
current_device='cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
|
| 19 |
# Model
|
| 20 |
model = AutoDetectionModel.from_pretrained(
|
| 21 |
+
model_type="yolov5", model_path=model_path, device=current_device, confidence_threshold=0.5, image_size=IMAGE_SIZE
|
| 22 |
)
|
| 23 |
|
| 24 |
|
| 25 |
def sahi_yolo_inference(
|
| 26 |
+
model_type,
|
| 27 |
image,
|
| 28 |
slice_height=512,
|
| 29 |
slice_width=512,
|
|
|
|
| 35 |
postprocess_class_agnostic=False,
|
| 36 |
):
|
| 37 |
|
| 38 |
+
#image_width, image_height = image.size
|
| 39 |
+
# sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
| 40 |
+
# image_height,
|
| 41 |
+
# image_width,
|
| 42 |
+
# slice_height,
|
| 43 |
+
# slice_width,
|
| 44 |
+
# False,
|
| 45 |
+
# overlap_height_ratio,
|
| 46 |
+
# overlap_width_ratio,
|
| 47 |
+
# )
|
| 48 |
+
# if len(sliced_bboxes) > 60:
|
| 49 |
+
# raise ValueError(
|
| 50 |
+
# f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
| 51 |
+
# )
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
if "SAHI" in model_type:
|
| 57 |
+
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
image=image,
|
| 59 |
detection_model=model,
|
| 60 |
slice_height=int(slice_height),
|
|
|
|
| 65 |
postprocess_match_metric=postprocess_match_metric,
|
| 66 |
postprocess_match_threshold=postprocess_match_threshold,
|
| 67 |
postprocess_class_agnostic=postprocess_class_agnostic,
|
| 68 |
+
)
|
| 69 |
+
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
| 70 |
+
image=numpy.array(image),
|
| 71 |
+
object_prediction_list=prediction_result_2.object_prediction_list,
|
| 72 |
+
)
|
| 73 |
+
output = Image.fromarray(visual_result_2["image"])
|
| 74 |
+
|
| 75 |
+
else:
|
| 76 |
+
# standard inference
|
| 77 |
+
prediction_result_1 = sahi.predict.get_prediction(
|
| 78 |
+
image=image, detection_model=model
|
| 79 |
+
)
|
| 80 |
+
print(image)
|
| 81 |
+
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
|
| 82 |
+
image=numpy.array(image),
|
| 83 |
+
object_prediction_list=prediction_result_1.object_prediction_list,
|
| 84 |
+
)
|
| 85 |
+
output = Image.fromarray(visual_result_1["image"])
|
| 86 |
+
|
| 87 |
+
# sliced inference
|
| 88 |
|
|
|
|
| 89 |
|
| 90 |
+
return output
|
| 91 |
|
| 92 |
|
| 93 |
inputs = [
|
| 94 |
+
gr.Dropdown(choices=["YOLOv5","YOLOv5 + SAHI"],label="Choose Model Type"),
|
| 95 |
gr.inputs.Image(type="pil", label="Original Image"),
|
| 96 |
gr.inputs.Number(default=512, label="slice_height"),
|
| 97 |
gr.inputs.Number(default=512, label="slice_width"),
|
|
|
|
| 111 |
]
|
| 112 |
|
| 113 |
outputs = [
|
| 114 |
+
gr.outputs.Image(type="pil", label="Output")
|
|
|
|
| 115 |
]
|
| 116 |
|
| 117 |
title = "Small Object Detection with SAHI + YOLOv5"
|