File size: 7,003 Bytes
fc8c192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from __future__ import absolute_import, division, print_function, unicode_literals

import random

import cv2
import numpy as np


def is_poly_in_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
        return False
    if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
        return False
    return True


def is_poly_outside_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
        return True
    if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
        return True
    return False


def split_regions(axis):
    regions = []
    min_axis = 0
    for i in range(1, axis.shape[0]):
        if axis[i] != axis[i - 1] + 1:
            region = axis[min_axis:i]
            min_axis = i
            regions.append(region)
    return regions


def random_select(axis, max_size):
    xx = np.random.choice(axis, size=2)
    xmin = np.min(xx)
    xmax = np.max(xx)
    xmin = np.clip(xmin, 0, max_size - 1)
    xmax = np.clip(xmax, 0, max_size - 1)
    return xmin, xmax


def region_wise_random_select(regions, max_size):
    selected_index = list(np.random.choice(len(regions), 2))
    selected_values = []
    for index in selected_index:
        axis = regions[index]
        xx = int(np.random.choice(axis, size=1))
        selected_values.append(xx)
    xmin = min(selected_values)
    xmax = max(selected_values)
    return xmin, xmax


def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
    h, w, _ = im.shape
    h_array = np.zeros(h, dtype=np.int32)
    w_array = np.zeros(w, dtype=np.int32)
    for points in text_polys:
        points = np.round(points, decimals=0).astype(np.int32)
        minx = np.min(points[:, 0])
        maxx = np.max(points[:, 0])
        w_array[minx:maxx] = 1
        miny = np.min(points[:, 1])
        maxy = np.max(points[:, 1])
        h_array[miny:maxy] = 1
    # ensure the cropped area not across a text
    h_axis = np.where(h_array == 0)[0]
    w_axis = np.where(w_array == 0)[0]

    if len(h_axis) == 0 or len(w_axis) == 0:
        return 0, 0, w, h

    h_regions = split_regions(h_axis)
    w_regions = split_regions(w_axis)

    for i in range(max_tries):
        if len(w_regions) > 1:
            xmin, xmax = region_wise_random_select(w_regions, w)
        else:
            xmin, xmax = random_select(w_axis, w)
        if len(h_regions) > 1:
            ymin, ymax = region_wise_random_select(h_regions, h)
        else:
            ymin, ymax = random_select(h_axis, h)

        if (
            xmax - xmin < min_crop_side_ratio * w
            or ymax - ymin < min_crop_side_ratio * h
        ):
            # area too small
            continue
        num_poly_in_rect = 0
        for poly in text_polys:
            if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin, ymax - ymin):
                num_poly_in_rect += 1
                break

        if num_poly_in_rect > 0:
            return xmin, ymin, xmax - xmin, ymax - ymin

    return 0, 0, w, h


class EastRandomCropData(object):
    def __init__(
        self,
        size=(640, 640),
        max_tries=10,
        min_crop_side_ratio=0.1,
        keep_ratio=True,
        **kwargs
    ):
        self.size = size
        self.max_tries = max_tries
        self.min_crop_side_ratio = min_crop_side_ratio
        self.keep_ratio = keep_ratio

    def __call__(self, data):
        img = data["image"]
        text_polys = data["polys"]
        ignore_tags = data["ignore_tags"]
        texts = data["texts"]
        all_care_polys = [text_polys[i] for i, tag in enumerate(ignore_tags) if not tag]
        # 计算crop区域
        crop_x, crop_y, crop_w, crop_h = crop_area(
            img, all_care_polys, self.min_crop_side_ratio, self.max_tries
        )
        # crop 图片 保持比例填充
        scale_w = self.size[0] / crop_w
        scale_h = self.size[1] / crop_h
        scale = min(scale_w, scale_h)
        h = int(crop_h * scale)
        w = int(crop_w * scale)
        if self.keep_ratio:
            padimg = np.zeros((self.size[1], self.size[0], img.shape[2]), img.dtype)
            padimg[:h, :w] = cv2.resize(
                img[crop_y : crop_y + crop_h, crop_x : crop_x + crop_w], (w, h)
            )
            img = padimg
        else:
            img = cv2.resize(
                img[crop_y : crop_y + crop_h, crop_x : crop_x + crop_w],
                tuple(self.size),
            )
        # crop 文本框
        text_polys_crop = []
        ignore_tags_crop = []
        texts_crop = []
        for poly, text, tag in zip(text_polys, texts, ignore_tags):
            poly = ((poly - (crop_x, crop_y)) * scale).tolist()
            if not is_poly_outside_rect(poly, 0, 0, w, h):
                text_polys_crop.append(poly)
                ignore_tags_crop.append(tag)
                texts_crop.append(text)
        data["image"] = img
        data["polys"] = np.array(text_polys_crop)
        data["ignore_tags"] = ignore_tags_crop
        data["texts"] = texts_crop
        return data


class RandomCropImgMask(object):
    def __init__(self, size, main_key, crop_keys, p=3 / 8, **kwargs):
        self.size = size
        self.main_key = main_key
        self.crop_keys = crop_keys
        self.p = p

    def __call__(self, data):
        image = data["image"]

        h, w = image.shape[0:2]
        th, tw = self.size
        if w == tw and h == th:
            return data

        mask = data[self.main_key]
        if np.max(mask) > 0 and random.random() > self.p:
            # make sure to crop the text region
            tl = np.min(np.where(mask > 0), axis=1) - (th, tw)
            tl[tl < 0] = 0
            br = np.max(np.where(mask > 0), axis=1) - (th, tw)
            br[br < 0] = 0

            br[0] = min(br[0], h - th)
            br[1] = min(br[1], w - tw)

            i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
            j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
        else:
            i = random.randint(0, h - th) if h - th > 0 else 0
            j = random.randint(0, w - tw) if w - tw > 0 else 0

        # return i, j, th, tw
        for k in data:
            if k in self.crop_keys:
                if len(data[k].shape) == 3:
                    if np.argmin(data[k].shape) == 0:
                        img = data[k][:, i : i + th, j : j + tw]
                        if img.shape[1] != img.shape[2]:
                            a = 1
                    elif np.argmin(data[k].shape) == 2:
                        img = data[k][i : i + th, j : j + tw, :]
                        if img.shape[1] != img.shape[0]:
                            a = 1
                    else:
                        img = data[k]
                else:
                    img = data[k][i : i + th, j : j + tw]
                    if img.shape[0] != img.shape[1]:
                        a = 1
                data[k] = img
        return data