lyrics / app.py
demomodels's picture
Initial commit
3f6d243
raw
history blame
1.54 kB
import gradio as gr
import json
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
def process_audio(audio_file):
# In this example, let's just return a hardcoded array of JSON objects
output_data = [
{"label": "cat", "confidence": 0.8},
{"label": "dog", "confidence": 0.7},
{"label": "bird", "confidence": 0.6}
]
return json.dumps(output_data)
def process(audio):
# Read audio data from the file
# with open(audio.name, 'rb') as f:
# audio_data = f.read()
audio_data, audio_filename = audio
# Process the audio data
result = pipe(audio_data)['chunks']
for item in result:
item['timestamp'] = list(item['timestamp'])
return json.dumps(result)
iface = gr.Interface(fn=process, inputs="audio", outputs="text")
iface.launch()