Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=16, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def process_audio(audio_file): | |
# In this example, let's just return a hardcoded array of JSON objects | |
output_data = [ | |
{"label": "cat", "confidence": 0.8}, | |
{"label": "dog", "confidence": 0.7}, | |
{"label": "bird", "confidence": 0.6} | |
] | |
return json.dumps(output_data) | |
def process(audio): | |
result = pipe('audio.mp3')['chunks'] | |
for item in result: | |
item['timestamp'] = list(item['timestamp']) | |
return result | |
iface = gr.Interface(fn=process_audio, inputs="audio", outputs="text") | |
iface.launch() | |