delphiclinic commited on
Commit
b6b2622
Β·
verified Β·
1 Parent(s): 28a6eee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -12
app.py CHANGED
@@ -14,6 +14,7 @@ from langchain_community.document_loaders import PyPDFLoader
14
  # from dotenv import load_dotenv, find_dotenv
15
  import pickle
16
  import os
 
17
 
18
 
19
  ## loading the .env file
@@ -21,12 +22,6 @@ import os
21
 
22
  huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
23
 
24
-
25
- loader = PyPDFLoader("stg.pdf")
26
- documents = loader.load_and_split()
27
-
28
-
29
-
30
  # Define model and vector store
31
 
32
  embeddings = "BAAI/bge-base-en"
@@ -36,15 +31,33 @@ model_norm = HuggingFaceBgeEmbeddings(
36
  model_kwargs={'device': 'cpu'},
37
  encode_kwargs=encode_kwargs
38
  )
39
- vector_store = FAISS.from_documents(documents, model_norm)
40
- # job_done = object() # signals the processing is done
41
 
42
- ## saving the embeddings locally
43
- vector_store.save_local("cdssagent_database")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ##loading
46
- vector_store = FAISS.load_local("cdssagent_database", model_norm, allow_dangerous_deserialization=True)
47
- job_done = object()
48
 
49
 
50
  # Lets set up our streaming
 
14
  # from dotenv import load_dotenv, find_dotenv
15
  import pickle
16
  import os
17
+ from langchain_community.document_loaders import PyPDFDirectoryLoader
18
 
19
 
20
  ## loading the .env file
 
22
 
23
  huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
24
 
 
 
 
 
 
 
25
  # Define model and vector store
26
 
27
  embeddings = "BAAI/bge-base-en"
 
31
  model_kwargs={'device': 'cpu'},
32
  encode_kwargs=encode_kwargs
33
  )
 
 
34
 
35
+
36
+ try:
37
+ ##ltoading
38
+ vector_sore = FAISS.load_local("cdssagent_database", model_norm, allow_dangerous_deserialization=True)
39
+ job_done = object()
40
+ except Exception as e:
41
+ loader = PyPDFLoader("stg.pdf")
42
+ documents = loader.load_and_split()
43
+
44
+ # loader = PyPDFDirectoryLoader("wolo/")
45
+
46
+ # documents = loader.load_and_split()
47
+ vector_store = FAISS.from_documents(documents, model_norm)
48
+ # job_done = object() # signals the processing is done
49
+
50
+ ## saving the embeddings locally
51
+ vector_store.save_local("wolo_database")
52
+
53
+
54
+
55
+
56
+
57
 
58
  ##loading
59
+ # vector_store = FAISS.load_local("cdssagent_database", model_norm, allow_dangerous_deserialization=True)
60
+ # job_done = object()
61
 
62
 
63
  # Lets set up our streaming