File size: 7,482 Bytes
8dd0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693b3d1
8dd0141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1eaf7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import re
import json
import time
import requests
import anthropic
import google.auth
import gradio as gr
from uuid import uuid4
from dotenv import load_dotenv
from google.auth.transport.requests import Request


# Gemini
def get_google_token():
    credentials, project = google.auth.load_credentials_from_dict(
        json.loads(os.environ.get('GCP_FINETUNE_KEY')),
        scopes=[
            "https://www.googleapis.com/auth/cloud-platform",
            "https://www.googleapis.com/auth/generative-language.tuning",
        ],
    )
    request = Request()
    credentials.refresh(request)
    access_token = credentials.token
    return access_token


def dubpro_english_to_hindi(text):
    API_URL = os.environ.get("GEMINI_FINETUNED_ENG_HINDI_API")
    BEARER_TOKEN = get_google_token()
    headers = {
        "Authorization": f"Bearer {BEARER_TOKEN}",
        "Content-Type": "application/json",
    }
    payload = {
        "contents": [
            {
                "parts": [{"text": f"text: {text}"}],
                "role": "user",
            }
        ],
        "generationConfig": {
            "maxOutputTokens": 8192,
            "temperature": 0.85,
        },
        "safetySettings": [
            {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
            {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
            {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
            {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
        ],
    }
    result = requests.post(
        url=API_URL,
        headers=headers,
        json=payload
    )
    response = result.json()
    response_content = response['candidates'][0]['content']['parts'][0]['text'].replace("translated:", "").strip()
    return response_content


def gemini_english_to_hindi(text):
    API_URL = os.environ.get("GEMINI_FINETUNED_ENG_HINDI_API")
    BEARER_TOKEN = get_google_token()
    headers = {
        "Authorization": f"Bearer {BEARER_TOKEN}",
        "Content-Type": "application/json",
    }
    payload = {
        "contents": [
            {
                "parts": [{"text": f"Translate the following text to Hindi: `{text}` Output: "}],
                "role": "user",
            }
        ],
        "generationConfig": {
            "maxOutputTokens": 8192,
            "temperature": 0.85,
        },
        "safetySettings": [
            {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_NONE"},
            {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"},
            {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
            {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_NONE"},
        ],
    }
    result = requests.post(
        url=API_URL,
        headers=headers,
        json=payload
    )
    response = result.json()
    response_content = response['candidates'][0]['content']['parts'][0]['text'].replace("translated:", "").replace("`", "").strip()
    return response_content


# GPT models
def clean(result):
    text = result["choices"][0]['message']["content"]
    text = re.sub(r"\(.*?\)|\[.*?\]","", text)
    text = text.strip("'").replace('"', "")
    if "\n" in text.strip("\n"):
        text = text.split("\n")[-1]
    return text

def openai_english_to_hindi(text, model):
    prompt = f"Translate the following English text into Hindi such that the meaning in unchanged. Return only the translated text: `{text}`. Output: "

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
    }
    
    messages = [
        {"role": "system", "content": f"You are a language translation assistant."},
        {"role": "user", "content": prompt}
    ]
    
    resp = None
    while resp is None:
        resp = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json={
            "model": model,
            "messages": messages
        })
        if resp.status_code != 200:
            print(resp.text)
        time.sleep(0.5)
    response_json = resp.json()

    result_text = clean(response_json)
    return result_text


# Azure translate
def azure_english_to_hindi(text):
    headers = {
        "Ocp-Apim-Subscription-Key": os.environ.get("AZURE_TRANSLATE_KEY"),
        "Ocp-Apim-Subscription-Region": os.environ.get("AZURE_TRANSLATE_REGION"),
        "Content-type": "application/json",
        "X-ClientTraceId": str(uuid4()),
    }
    ENDPOINT = "https://api.cognitive.microsofttranslator.com/translate"
    params = {
        "api-version": "3.0",
        "from": "en-US",
        "to": "hi-IN",
    }
    texts = [{"text": text}]
    request = requests.post(ENDPOINT, headers=headers, params=params, json=texts)
    response = request.json()
    return response[0]["translations"][0]["text"]


# Anthopic Claude 3 Haiku
def claude_english_to_hindi(text):
    client = anthropic.Anthropic()
    message = client.messages.create(
        model="claude-3-haiku-20240307",
        max_tokens=1000,
        temperature=0.8,
        system="You are an expert language translator.",
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": f"Translate the following English text into Hindi such that the meaning in unchanged. Return only the translated text: `{text}`. Output: "
                    }
                ]
            }
        ]
    )
    return message.content[0].text


def render_translations(text):
    dubpro = dubpro_english_to_hindi(text)
    azure = azure_english_to_hindi(text)
    gemini = gemini_english_to_hindi(text)
    gpt_4 = openai_english_to_hindi(text, model="gpt-4")
    claude_haiku = claude_english_to_hindi(text)
    return gr.update(value=gpt_4), gr.update(value=dubpro), gr.update(value=gemini), gr.update(value=claude_haiku), gr.update(value=azure)


with gr.Blocks(title="English to Hindi Translation Tools", theme="gradio/monochrome") as demo:
    gr.Markdown("# English to Hindi Translation Tools")
    input_textbox = gr.Textbox(label="Input Text", info="Text to translate", value="When you did it, you must have attended your classes well or you must have done your daily revision. Now you feel scared.")
    submit = gr.Button(label="Submit")
    with gr.Row():
        gr.Label(value="Dubpro's Model", scale=1)
        dubpro_model_textbox = gr.Textbox(label="Translated Text", scale=2, interactive=False)
    with gr.Row():
        gr.Label(value="GPT 4", scale=1)
        gpt_4_textbox = gr.Textbox(label="Translated Text", scale=2, interactive=False)
    with gr.Row():
        gr.Label(value="Google Gemini", scale=1)
        google_textbox = gr.Textbox(label="Translated Text", scale=2, interactive=False)
    with gr.Row():
        gr.Label(value="Anthropic Claude 3", scale=1)
        claude_textbox = gr.Textbox(label="Translated Text", scale=2, interactive=False)
    with gr.Row():
        gr.Label(value="Azure Translate", scale=1)
        azure_textbox = gr.Textbox(label="Translated Text", scale=2, interactive=False)

    submit.click(render_translations, input_textbox, [gpt_4_textbox, dubpro_model_textbox, google_textbox, claude_textbox, azure_textbox])


if __name__=="__main__":
    demo.launch(auth=(os.environ["USERNAME"], os.environ["PASSWORD"]))