# https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py from dataclasses import dataclass import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from typing import Final, Optional, Callable, Union, Tuple, List, Set, Dict, Type, Literal, Sequence import math import warnings from timm.layers import ( PatchEmbed, Mlp, DropPath, AttentionPoolLatent, PatchDropout, resample_abs_pos_embed, LayerType ) from timm.models._manipulate import named_apply, checkpoint_seq, adapt_input_conv from transformers.modeling_utils import is_flash_attn_2_available from xformers.ops import memory_efficient_attention from functools import partial if is_flash_attn_2_available(): from flash_attn import flash_attn_qkvpacked_func def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) # noqa: E741 u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): # type: (torch.Tensor, float, float, float, float) -> torch.Tensor r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype. Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ with torch.no_grad(): dtype = tensor.dtype tensor_fp32 = tensor.float() tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b) tensor_dtype = tensor_fp32.to(dtype=dtype) tensor.copy_(tensor_dtype) def init_weights(self): if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5) trunc_normal_(self.latent, std=self.latent_dim ** -0.5) def init_weights_vit_timm(module: nn.Module, name: str = '') -> None: """ ViT weight initialization, original timm impl (for reproducibility) """ if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): module.init_weights() class Attention(nn.Module): fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0., proj_drop: float = 0., norm_layer: nn.Module = nn.LayerNorm, deterministic: bool = False, ) -> None: super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.qk_norm = qk_norm self.fused_attn = True self.deterministic = deterministic self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0. else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim) if not self.qk_norm: if self.head_dim % 32 == 0 and is_flash_attn_2_available(): # flashattn must have head_dim as a multiple of 32 x = flash_attn_qkvpacked_func(qkv, dropout_p=self.attn_drop.p if self.training else 0., deterministic=self.deterministic) else: q, k, v = qkv.unbind(2) x = memory_efficient_attention(q, k, v, p=self.attn_drop.p if self.training else 0.) x = x.reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x qkv = qkv.permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.fused_attn: with torch.backends.cuda.sdp_kernel(enable_math=False, enable_mem_efficient=False): # 用上下文的方式强行使用fa x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__( self, dim: int, init_values: float = 1e-5, inplace: bool = False, ) -> None: super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: return x.mul_(self.gamma) if self.inplace else x * self.gamma class Block(nn.Module): def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4., qkv_bias: bool = False, qk_norm: bool = False, proj_drop: float = 0., attn_drop: float = 0., init_values: Optional[float] = None, drop_path: float = 0., act_layer: nn.Module = nn.GELU, norm_layer: nn.Module = nn.LayerNorm, mlp_layer: nn.Module = Mlp, deterministic: bool = False, ) -> None: super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer, deterministic=deterministic, ) self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = mlp_layer( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ dynamic_img_size: Final[bool] def __init__( self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: Literal['', 'avg', 'token', 'map'] = 'token', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4., qkv_bias: bool = True, qk_norm: bool = False, init_values: Optional[float] = None, class_token: bool = True, no_embed_class: bool = False, reg_tokens: int = 0, pre_norm: bool = False, fc_norm: Optional[bool] = None, dynamic_img_size: bool = False, dynamic_img_pad: bool = False, drop_rate: float = 0., pos_drop_rate: float = 0., patch_drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., weight_init: Literal['skip', 'jax', 'jax_nlhb', 'moco', ''] = '', embed_layer: Callable = PatchEmbed, norm_layer: Optional[LayerType] = None, act_layer: Optional[LayerType] = None, block_fn: Type[nn.Module] = Block, mlp_layer: Type[nn.Module] = Mlp, ignore_head: bool = False, deterministic: bool = False, num_recomputing_layers: int = 0 ) -> None: """ Args: img_size: Input image size. patch_size: Patch size. in_chans: Number of image input channels. num_classes: Mumber of classes for classification head. global_pool: Type of global pooling for final sequence (default: 'token'). embed_dim: Transformer embedding dimension. depth: Depth of transformer. num_heads: Number of attention heads. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: Enable bias for qkv projections if True. init_values: Layer-scale init values (layer-scale enabled if not None). class_token: Use class token. no_embed_class: Don't include position embeddings for class (or reg) tokens. reg_tokens: Number of register tokens. fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'. drop_rate: Head dropout rate. pos_drop_rate: Position embedding dropout rate. attn_drop_rate: Attention dropout rate. drop_path_rate: Stochastic depth rate. weight_init: Weight initialization scheme. embed_layer: Patch embedding layer. norm_layer: Normalization layer. act_layer: MLP activation layer. block_fn: Transformer block layer. """ super().__init__() assert global_pool in ('', 'avg', 'token', 'map') assert class_token or global_pool != 'token' use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm # norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6) # act_layer = get_act_layer(act_layer) or nn.GELU norm_layer = partial(nn.LayerNorm, eps=1e-6) # siglip use PytorchGELUTanh() rather than the vanilla nn.GELU() # https://github.com/huggingface/transformers/blob/78b2929c0554b79e0489b451ce4ece14d265ead2/src/transformers/models/siglip/configuration_siglip.py#L191 act_layer = partial(nn.GELU, approximate='tanh') self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_prefix_tokens = 1 if class_token else 0 self.num_prefix_tokens += reg_tokens self.num_reg_tokens = reg_tokens self.has_class_token = class_token self.no_embed_class = no_embed_class # don't embed prefix positions (includes reg) self.dynamic_img_size = dynamic_img_size self.grad_checkpointing = False self.ignore_head = ignore_head self.num_recomputing_layers = num_recomputing_layers embed_args = {} if dynamic_img_size: # flatten deferred until after pos embed embed_args.update(dict(strict_img_size=False, output_fmt='NHWC')) self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) dynamic_img_pad=dynamic_img_pad, **embed_args, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None self.reg_token = nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) self.pos_drop = nn.Dropout(p=pos_drop_rate) if patch_drop_rate > 0: self.patch_drop = PatchDropout( patch_drop_rate, num_prefix_tokens=self.num_prefix_tokens, ) else: self.patch_drop = nn.Identity() self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.Sequential(*[ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, init_values=init_values, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, mlp_layer=mlp_layer, deterministic=deterministic, ) for i in range(depth)]) self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() # Classifier Head if global_pool == 'map': AttentionPoolLatent.init_weights = init_weights self.attn_pool = AttentionPoolLatent( self.embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, norm_layer=norm_layer, ) else: self.attn_pool = None self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() self.head_drop = nn.Dropout(drop_rate) self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() if weight_init != 'skip': self.init_weights(weight_init) def init_weights(self, mode: Literal['jax', 'jax_nlhb', 'moco', ''] = '') -> None: assert mode in ('jax', 'jax_nlhb', 'moco', '') head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. trunc_normal_(self.pos_embed, std=.02) if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) named_apply(init_weights_vit_timm, self) @torch.jit.ignore def no_weight_decay(self) -> Set: return {'pos_embed', 'cls_token', 'dist_token'} @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict: return dict( stem=r'^cls_token|pos_embed|patch_embed', # stem and embed blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] ) @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True) -> None: self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool=None) -> None: self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'avg', 'token', 'map') if global_pool == 'map' and self.attn_pool is None: assert False, "Cannot currently add attention pooling in reset_classifier()." elif global_pool != 'map ' and self.attn_pool is not None: self.attn_pool = None # remove attention pooling self.global_pool = global_pool self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: if self.dynamic_img_size: B, H, W, C = x.shape pos_embed = resample_abs_pos_embed( self.pos_embed, (H, W), num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, ) x = x.view(B, -1, C) else: pos_embed = self.pos_embed to_cat = [] if self.cls_token is not None: to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) if self.reg_token is not None: to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) if self.no_embed_class: # deit-3, updated JAX (big vision) # position embedding does not overlap with class token, add then concat x = x + pos_embed if to_cat: x = torch.cat(to_cat + [x], dim=1) else: # original timm, JAX, and deit vit impl # pos_embed has entry for class token, concat then add if to_cat: x = torch.cat(to_cat + [x], dim=1) x = x + pos_embed return self.pos_drop(x) def _intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, ) -> List[torch.Tensor]: outputs, num_blocks = [], len(self.blocks) take_indices = set(range(num_blocks - n, num_blocks) if isinstance(n, int) else n) # forward pass x = self.patch_embed(x) x = self._pos_embed(x) x = self.patch_drop(x) x = self.norm_pre(x) for i, blk in enumerate(self.blocks): x = blk(x) if i in take_indices: outputs.append(x) return outputs def get_intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, reshape: bool = False, return_prefix_tokens: bool = False, norm: bool = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: """ Intermediate layer accessor (NOTE: This is a WIP experiment). Inspired by DINO / DINOv2 interface """ # take last n blocks if n is an int, if in is a sequence, select by matching indices outputs = self._intermediate_layers(x, n) if norm: outputs = [self.norm(out) for out in outputs] prefix_tokens = [out[:, 0:self.num_prefix_tokens] for out in outputs] outputs = [out[:, self.num_prefix_tokens:] for out in outputs] if reshape: grid_size = self.patch_embed.grid_size outputs = [ out.reshape(x.shape[0], grid_size[0], grid_size[1], -1).permute(0, 3, 1, 2).contiguous() for out in outputs ] if return_prefix_tokens: return tuple(zip(outputs, prefix_tokens)) return tuple(outputs) def forward_features(self, x: torch.Tensor) -> torch.Tensor: if getattr(self, "is_first_stage", True): x = self.patch_embed(x) x = self._pos_embed(x) x = self.patch_drop(x) x = self.norm_pre(x) if self.grad_checkpointing and not torch.jit.is_scripting(): skip_last = max(1, len(self.blocks) - self.num_recomputing_layers) x = checkpoint_seq(self.blocks, x, skip_last=skip_last) else: x = self.blocks(x) if getattr(self, "is_last_stage", True): x = self.norm(x) return x def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: if not getattr(self, "is_last_stage", True): return x if self.attn_pool is not None: x = self.attn_pool(x) elif self.global_pool == 'avg': x = x[:, self.num_prefix_tokens:].mean(dim=1) elif self.global_pool: x = x[:, 0] # class token x = self.fc_norm(x) x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) if not self.ignore_head: x = self.forward_head(x) return x def to_pipeline(self, pp_size, pp_rank, pp_splits: Optional[List[int]] = None): self.is_first_stage = pp_rank == 0 self.is_last_stage = pp_rank == pp_size - 1 if not self.is_first_stage and hasattr(self, "patch_embed"): del self.patch_embed, self.cls_token, self.reg_token, self.pos_embed, self.pos_drop, self.patch_drop, self.norm_pre if not self.is_last_stage and hasattr(self, "norm"): del self.norm, self.attn_pool, self.fc_norm, self.head_drop, self.head if pp_splits is not None: assert len(self.blocks) == sum(pp_splits) splits = np.cumsum([0] + pp_splits) self.blocks = self.blocks[splits[pp_rank]:splits[pp_rank + 1]] return self @dataclass class SigLIPVisionCfg: width: int = 1152 layers: Union[Tuple[int, int, int, int], int] = 27 heads: int = 16 patch_size: int = 14 image_size: Union[Tuple[int, int], int] = 336 global_pool: str = "map" mlp_ratio: float = 3.7362 class_token: bool = False num_classes: int = 0 use_checkpoint: bool = False SigLIP_MODEL_CONFIG = { "siglip_so400m_patch14_384": { "image_size": 384, "patch_size": 14, "width": 1152, "layers": 27, "heads": 16, "mlp_ratio": 3.7362, "global_pool": "map", "use_checkpoint": False }, "siglip_so400m_patch14_224": { "image_size": 224, "patch_size": 14, "width": 1152, "layers": 27, "heads": 16, "mlp_ratio": 3.7362, "global_pool": "map", "use_checkpoint": False }, "siglip_large_patch16_384": { "image_size": 384, "patch_size": 16, "width": 1024, "layers": 24, "heads": 16, "mlp_ratio": 4, "global_pool": "map", "use_checkpoint": False } } def create_siglip_vit( model_name: str = "siglip_so400m_patch14_384", image_size: int = 384, select_layer: int = -1, ckpt_path: str = "", **kwargs ): assert model_name in SigLIP_MODEL_CONFIG.keys(), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}" vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name]) if select_layer <= 0: layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1) else: layers = min(vision_cfg.layers, select_layer) model = VisionTransformer( img_size=image_size, patch_size=vision_cfg.patch_size, embed_dim=vision_cfg.width, depth=layers, num_heads=vision_cfg.heads, mlp_ratio=vision_cfg.mlp_ratio, class_token=vision_cfg.class_token, global_pool=vision_cfg.global_pool, ignore_head=kwargs.get("ignore_head", True), weight_init=kwargs.get("weight_init", "skip"), num_classes=0, deterministic=kwargs.get("deterministic", False), num_recomputing_layers=kwargs.get("num_recomputing_layers", 0) ) if ckpt_path: state_dict = torch.load(ckpt_path, map_location="cpu") incompatible_keys = model.load_state_dict(state_dict, strict=False) print(f"SigLIP-ViT restores from {ckpt_path},\n" f"\tincompatible_keys:', {incompatible_keys}.") return model