doubility123 commited on
Commit
2c1a288
ยท
1 Parent(s): edced0a

add app.py

Browse files
Files changed (1) hide show
  1. app.py +670 -0
app.py ADDED
@@ -0,0 +1,670 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # -*- coding:utf-8 -*-
21
+ from argparse import ArgumentParser
22
+
23
+ import io
24
+ import sys
25
+ import base64
26
+ from PIL import Image
27
+
28
+ import gradio as gr
29
+ import torch
30
+
31
+ from deepseek_vl2.serve.app_modules.gradio_utils import (
32
+ cancel_outputing,
33
+ delete_last_conversation,
34
+ reset_state,
35
+ reset_textbox,
36
+ wrap_gen_fn,
37
+ )
38
+ from deepseek_vl2.serve.app_modules.overwrites import reload_javascript
39
+ from deepseek_vl2.serve.app_modules.presets import (
40
+ CONCURRENT_COUNT,
41
+ MAX_EVENTS,
42
+ description,
43
+ description_top,
44
+ title
45
+ )
46
+ from deepseek_vl2.serve.app_modules.utils import (
47
+ configure_logger,
48
+ is_variable_assigned,
49
+ strip_stop_words,
50
+ parse_ref_bbox,
51
+ pil_to_base64,
52
+ display_example
53
+ )
54
+
55
+ from deepseek_vl2.serve.inference import (
56
+ convert_conversation_to_prompts,
57
+ deepseek_generate,
58
+ load_model,
59
+ )
60
+ from deepseek_vl2.models.conversation import SeparatorStyle
61
+
62
+ logger = configure_logger()
63
+
64
+ MODELS = [
65
+ "DeepSeek-VL2-tiny",
66
+ "DeepSeek-VL2-small",
67
+ "DeepSeek-VL2",
68
+
69
+ "deepseek-ai/deepseek-vl2-tiny",
70
+ "deepseek-ai/deepseek-vl2-small",
71
+ "deepseek-ai/deepseek-vl2",
72
+ ]
73
+
74
+ DEPLOY_MODELS = dict()
75
+ IMAGE_TOKEN = "<image>"
76
+
77
+ examples_list = [
78
+ # visual grounding - 1
79
+ [
80
+ ["images/visual_grounding_1.jpeg"],
81
+ "<|ref|>The giraffe at the back.<|/ref|>",
82
+ ],
83
+
84
+ # visual grounding - 2
85
+ [
86
+ ["images/visual_grounding_2.jpg"],
87
+ "ๆ‰พๅˆฐ<|ref|>ๆทกๅฎšๅง<|/ref|>",
88
+ ],
89
+
90
+ # visual grounding - 3
91
+ [
92
+ ["images/visual_grounding_3.png"],
93
+ "Find all the <|ref|>Watermelon slices<|/ref|>",
94
+ ],
95
+
96
+ # grounding conversation
97
+ [
98
+ ["images/grounding_conversation_1.jpeg"],
99
+ "<|grounding|>I want to throw out the trash now, what should I do?",
100
+ ],
101
+
102
+ # in-context visual grounding
103
+ [
104
+ [
105
+ "images/incontext_visual_grounding_1.jpeg",
106
+ "images/icl_vg_2.jpeg"
107
+ ],
108
+ "<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image."
109
+ ],
110
+
111
+ # vqa
112
+ [
113
+ ["images/vqa_1.jpg"],
114
+ "Describe each stage of this image in detail",
115
+ ],
116
+
117
+ # multi-images
118
+ [
119
+ [
120
+ "images/multi_image_1.jpeg",
121
+ "images/mi_2.jpeg",
122
+ "images/mi_3.jpeg"
123
+ ],
124
+ "่ƒฝๅธฎๆˆ‘็”จ่ฟ™ๅ‡ ไธช้ฃŸๆๅšไธ€้“่œๅ—?",
125
+ ]
126
+
127
+ ]
128
+
129
+
130
+ def fetch_model(model_name: str, dtype=torch.bfloat16):
131
+ global args, DEPLOY_MODELS
132
+
133
+ if args.local_path:
134
+ model_path = args.local_path
135
+ else:
136
+ model_path = model_name
137
+
138
+ if model_name in DEPLOY_MODELS:
139
+ model_info = DEPLOY_MODELS[model_name]
140
+ print(f"{model_name} has been loaded.")
141
+ else:
142
+ print(f"{model_name} is loading...")
143
+ DEPLOY_MODELS[model_name] = load_model(model_path, dtype=dtype)
144
+ print(f"Load {model_name} successfully...")
145
+ model_info = DEPLOY_MODELS[model_name]
146
+
147
+ return model_info
148
+
149
+
150
+ def generate_prompt_with_history(
151
+ text, images, history, vl_chat_processor, tokenizer, max_length=2048
152
+ ):
153
+ """
154
+ Generate a prompt with history for the deepseek application.
155
+
156
+ Args:
157
+ text (str): The text prompt.
158
+ images (list[PIL.Image.Image]): The image prompt.
159
+ history (list): List of previous conversation messages.
160
+ tokenizer: The tokenizer used for encoding the prompt.
161
+ max_length (int): The maximum length of the prompt.
162
+
163
+ Returns:
164
+ tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
165
+ """
166
+ global IMAGE_TOKEN
167
+
168
+ sft_format = "deepseek"
169
+ user_role_ind = 0
170
+ bot_role_ind = 1
171
+
172
+ # Initialize conversation
173
+ conversation = vl_chat_processor.new_chat_template()
174
+
175
+ if history:
176
+ conversation.messages = history
177
+
178
+ if images is not None and len(images) > 0:
179
+
180
+ num_image_tags = text.count(IMAGE_TOKEN)
181
+ num_images = len(images)
182
+
183
+ if num_images > num_image_tags:
184
+ pad_image_tags = num_images - num_image_tags
185
+ image_tokens = "\n".join([IMAGE_TOKEN] * pad_image_tags)
186
+
187
+ # append the <image> in a new line after the text prompt
188
+ text = image_tokens + "\n" + text
189
+ elif num_images < num_image_tags:
190
+ remove_image_tags = num_image_tags - num_images
191
+ text = text.replace(IMAGE_TOKEN, "", remove_image_tags)
192
+
193
+ # print(f"prompt = {text}, len(images) = {len(images)}")
194
+ text = (text, images)
195
+
196
+ conversation.append_message(conversation.roles[user_role_ind], text)
197
+ conversation.append_message(conversation.roles[bot_role_ind], "")
198
+
199
+ # Create a copy of the conversation to avoid history truncation in the UI
200
+ conversation_copy = conversation.copy()
201
+ logger.info("=" * 80)
202
+ logger.info(get_prompt(conversation))
203
+
204
+ rounds = len(conversation.messages) // 2
205
+
206
+ for _ in range(rounds):
207
+ current_prompt = get_prompt(conversation)
208
+ current_prompt = (
209
+ current_prompt.replace("</s>", "")
210
+ if sft_format == "deepseek"
211
+ else current_prompt
212
+ )
213
+
214
+ if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
215
+ return conversation_copy
216
+
217
+ if len(conversation.messages) % 2 != 0:
218
+ gr.Error("The messages between user and assistant are not paired.")
219
+ return
220
+
221
+ try:
222
+ for _ in range(2): # pop out two messages in a row
223
+ conversation.messages.pop(0)
224
+ except IndexError:
225
+ gr.Error("Input text processing failed, unable to respond in this round.")
226
+ return None
227
+
228
+ gr.Error("Prompt could not be generated within max_length limit.")
229
+ return None
230
+
231
+
232
+ def to_gradio_chatbot(conv):
233
+ """Convert the conversation to gradio chatbot format."""
234
+ ret = []
235
+ for i, (role, msg) in enumerate(conv.messages[conv.offset:]):
236
+ if i % 2 == 0:
237
+ if type(msg) is tuple:
238
+ msg, images = msg
239
+
240
+ if isinstance(images, list):
241
+ for j, image in enumerate(images):
242
+ if isinstance(image, str):
243
+ with open(image, "rb") as f:
244
+ data = f.read()
245
+ img_b64_str = base64.b64encode(data).decode()
246
+ image_str = (f'<img src="data:image/png;base64,{img_b64_str}" '
247
+ f'alt="user upload image" style="max-width: 300px; height: auto;" />')
248
+ else:
249
+ image_str = pil_to_base64(image, f"user upload image_{j}", max_size=800, min_size=400)
250
+
251
+ # replace the <image> tag in the message
252
+ msg = msg.replace(IMAGE_TOKEN, image_str, 1)
253
+
254
+ else:
255
+ pass
256
+
257
+ ret.append([msg, None])
258
+ else:
259
+ ret[-1][-1] = msg
260
+ return ret
261
+
262
+
263
+ def to_gradio_history(conv):
264
+ """Convert the conversation to gradio history state."""
265
+ return conv.messages[conv.offset:]
266
+
267
+
268
+ def get_prompt(conv) -> str:
269
+ """Get the prompt for generation."""
270
+ system_prompt = conv.system_template.format(system_message=conv.system_message)
271
+ if conv.sep_style == SeparatorStyle.DeepSeek:
272
+ seps = [conv.sep, conv.sep2]
273
+ if system_prompt == "" or system_prompt is None:
274
+ ret = ""
275
+ else:
276
+ ret = system_prompt + seps[0]
277
+ for i, (role, message) in enumerate(conv.messages):
278
+ if message:
279
+ if type(message) is tuple: # multimodal message
280
+ message, _ = message
281
+ ret += role + ": " + message + seps[i % 2]
282
+ else:
283
+ ret += role + ":"
284
+ return ret
285
+ else:
286
+ return conv.get_prompt()
287
+
288
+
289
+ def transfer_input(input_text, input_images):
290
+ print("transferring input text and input image")
291
+
292
+ return (
293
+ input_text,
294
+ input_images,
295
+ gr.update(value=""),
296
+ gr.update(value=None),
297
+ gr.Button(visible=True)
298
+ )
299
+
300
+
301
+ @wrap_gen_fn
302
+ def predict(
303
+ text,
304
+ images,
305
+ chatbot,
306
+ history,
307
+ top_p,
308
+ temperature,
309
+ repetition_penalty,
310
+ max_length_tokens,
311
+ max_context_length_tokens,
312
+ model_select_dropdown,
313
+ ):
314
+ """
315
+ Function to predict the response based on the user's input and selected model.
316
+
317
+ Parameters:
318
+ user_text (str): The input text from the user.
319
+ user_image (str): The input image from the user.
320
+ chatbot (str): The chatbot's name.
321
+ history (str): The history of the chat.
322
+ top_p (float): The top-p parameter for the model.
323
+ temperature (float): The temperature parameter for the model.
324
+ max_length_tokens (int): The maximum length of tokens for the model.
325
+ max_context_length_tokens (int): The maximum length of context tokens for the model.
326
+ model_select_dropdown (str): The selected model from the dropdown.
327
+
328
+ Returns:
329
+ generator: A generator that yields the chatbot outputs, history, and status.
330
+ """
331
+ print("running the prediction function")
332
+ try:
333
+ tokenizer, vl_gpt, vl_chat_processor = fetch_model(model_select_dropdown)
334
+
335
+ if text == "":
336
+ yield chatbot, history, "Empty context."
337
+ return
338
+ except KeyError:
339
+ yield [[text, "No Model Found"]], [], "No Model Found"
340
+ return
341
+
342
+ if images is None:
343
+ images = []
344
+
345
+ # load images
346
+ pil_images = []
347
+ for img_or_file in images:
348
+ try:
349
+ # load as pil image
350
+ if isinstance(images, Image.Image):
351
+ pil_images.append(img_or_file)
352
+ else:
353
+ image = Image.open(img_or_file.name).convert("RGB")
354
+ pil_images.append(image)
355
+ except Exception as e:
356
+ print(f"Error loading image: {e}")
357
+
358
+ conversation = generate_prompt_with_history(
359
+ text,
360
+ pil_images,
361
+ history,
362
+ vl_chat_processor,
363
+ tokenizer,
364
+ max_length=max_context_length_tokens,
365
+ )
366
+ all_conv, last_image = convert_conversation_to_prompts(conversation)
367
+
368
+ stop_words = conversation.stop_str
369
+ gradio_chatbot_output = to_gradio_chatbot(conversation)
370
+
371
+ full_response = ""
372
+ with torch.no_grad():
373
+ for x in deepseek_generate(
374
+ conversations=all_conv,
375
+ vl_gpt=vl_gpt,
376
+ vl_chat_processor=vl_chat_processor,
377
+ tokenizer=tokenizer,
378
+ stop_words=stop_words,
379
+ max_length=max_length_tokens,
380
+ temperature=temperature,
381
+ repetition_penalty=repetition_penalty,
382
+ top_p=top_p,
383
+ chunk_size=args.chunk_size
384
+ ):
385
+ full_response += x
386
+ response = strip_stop_words(full_response, stop_words)
387
+ conversation.update_last_message(response)
388
+ gradio_chatbot_output[-1][1] = response
389
+
390
+ # sys.stdout.write(x)
391
+ # sys.stdout.flush()
392
+
393
+ yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
394
+
395
+ if last_image is not None:
396
+ # TODO always render the last image's visual grounding image
397
+ vg_image = parse_ref_bbox(response, last_image)
398
+ if vg_image is not None:
399
+ vg_base64 = pil_to_base64(vg_image, f"vg", max_size=800, min_size=400)
400
+ gradio_chatbot_output[-1][1] += vg_base64
401
+ yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
402
+
403
+ print("flushed result to gradio")
404
+ torch.cuda.empty_cache()
405
+
406
+ if is_variable_assigned("x"):
407
+ print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
408
+ print(
409
+ f"temperature: {temperature}, "
410
+ f"top_p: {top_p}, "
411
+ f"repetition_penalty: {repetition_penalty}, "
412
+ f"max_length_tokens: {max_length_tokens}"
413
+ )
414
+
415
+ yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
416
+
417
+
418
+ # @wrap_gen_fn
419
+ def retry(
420
+ text,
421
+ images,
422
+ chatbot,
423
+ history,
424
+ top_p,
425
+ temperature,
426
+ repetition_penalty,
427
+ max_length_tokens,
428
+ max_context_length_tokens,
429
+ model_select_dropdown,
430
+ ):
431
+ if len(history) == 0:
432
+ yield (chatbot, history, "Empty context")
433
+ return
434
+
435
+ chatbot.pop()
436
+ history.pop()
437
+ text = history.pop()[-1]
438
+ if type(text) is tuple:
439
+ text, image = text
440
+
441
+ yield from predict(
442
+ text,
443
+ images,
444
+ chatbot,
445
+ history,
446
+ top_p,
447
+ temperature,
448
+ repetition_penalty,
449
+ max_length_tokens,
450
+ max_context_length_tokens,
451
+ model_select_dropdown,
452
+ args.chunk_size
453
+ )
454
+
455
+
456
+ def preview_images(files):
457
+ if files is None:
458
+ return []
459
+
460
+ image_paths = []
461
+ for file in files:
462
+ # ไฝฟ็”จ file.name ่Žทๅ–ๆ–‡ไปถ่ทฏๅพ„
463
+ # image = Image.open(file.name)
464
+ image_paths.append(file.name)
465
+ return image_paths # ่ฟ”ๅ›žๆ‰€ๆœ‰ๅ›พ็‰‡่ทฏๅพ„๏ผŒ็”จไบŽ้ข„่งˆ
466
+
467
+
468
+ def build_demo(args):
469
+ # fetch model
470
+ if not args.lazy_load:
471
+ fetch_model(args.model_name)
472
+
473
+ with open("deepseek_vl2/serve/assets/custom.css", "r", encoding="utf-8") as f:
474
+ customCSS = f.read()
475
+
476
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
477
+ history = gr.State([])
478
+ input_text = gr.State()
479
+ input_images = gr.State()
480
+
481
+ with gr.Row():
482
+ gr.HTML(title)
483
+ status_display = gr.Markdown("Success", elem_id="status_display")
484
+ gr.Markdown(description_top)
485
+
486
+ with gr.Row(equal_height=True):
487
+ with gr.Column(scale=4):
488
+ with gr.Row():
489
+ chatbot = gr.Chatbot(
490
+ elem_id="deepseek_chatbot",
491
+ show_share_button=True,
492
+ bubble_full_width=False,
493
+ height=600,
494
+ )
495
+ with gr.Row():
496
+ with gr.Column(scale=4):
497
+ text_box = gr.Textbox(
498
+ show_label=False, placeholder="Enter text", container=False
499
+ )
500
+ with gr.Column(
501
+ min_width=70,
502
+ ):
503
+ submitBtn = gr.Button("Send")
504
+ with gr.Column(
505
+ min_width=70,
506
+ ):
507
+ cancelBtn = gr.Button("Stop")
508
+ with gr.Row():
509
+ emptyBtn = gr.Button(
510
+ "๐Ÿงน New Conversation",
511
+ )
512
+ retryBtn = gr.Button("๐Ÿ”„ Regenerate")
513
+ delLastBtn = gr.Button("๐Ÿ—‘๏ธ Remove Last Turn")
514
+
515
+ with gr.Column():
516
+ upload_images = gr.Files(file_types=["image"], show_label=True)
517
+ gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
518
+
519
+ upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
520
+
521
+ with gr.Tab(label="Parameter Setting") as parameter_row:
522
+ top_p = gr.Slider(
523
+ minimum=-0,
524
+ maximum=1.0,
525
+ value=0.9,
526
+ step=0.05,
527
+ interactive=True,
528
+ label="Top-p",
529
+ )
530
+ temperature = gr.Slider(
531
+ minimum=0,
532
+ maximum=1.0,
533
+ value=0.1,
534
+ step=0.1,
535
+ interactive=True,
536
+ label="Temperature",
537
+ )
538
+ repetition_penalty = gr.Slider(
539
+ minimum=0.0,
540
+ maximum=2.0,
541
+ value=1.1,
542
+ step=0.1,
543
+ interactive=True,
544
+ label="Repetition penalty",
545
+ )
546
+ max_length_tokens = gr.Slider(
547
+ minimum=0,
548
+ maximum=4096,
549
+ value=2048,
550
+ step=8,
551
+ interactive=True,
552
+ label="Max Generation Tokens",
553
+ )
554
+ max_context_length_tokens = gr.Slider(
555
+ minimum=0,
556
+ maximum=8192,
557
+ value=4096,
558
+ step=128,
559
+ interactive=True,
560
+ label="Max History Tokens",
561
+ )
562
+ model_select_dropdown = gr.Dropdown(
563
+ label="Select Models",
564
+ choices=[args.model_name],
565
+ multiselect=False,
566
+ value=args.model_name,
567
+ interactive=True,
568
+ )
569
+
570
+ # show images, but not visible
571
+ show_images = gr.HTML(visible=False)
572
+ # show_images = gr.Image(type="pil", interactive=False, visible=False)
573
+
574
+ def format_examples(examples_list):
575
+ examples = []
576
+ for images, texts in examples_list:
577
+ examples.append([images, display_example(images), texts])
578
+
579
+ return examples
580
+
581
+ gr.Examples(
582
+ examples=format_examples(examples_list),
583
+ inputs=[upload_images, show_images, text_box],
584
+ )
585
+
586
+ gr.Markdown(description)
587
+
588
+ input_widgets = [
589
+ input_text,
590
+ input_images,
591
+ chatbot,
592
+ history,
593
+ top_p,
594
+ temperature,
595
+ repetition_penalty,
596
+ max_length_tokens,
597
+ max_context_length_tokens,
598
+ model_select_dropdown,
599
+ ]
600
+ output_widgets = [chatbot, history, status_display]
601
+
602
+ transfer_input_args = dict(
603
+ fn=transfer_input,
604
+ inputs=[text_box, upload_images],
605
+ outputs=[input_text, input_images, text_box, upload_images, submitBtn],
606
+ show_progress=True,
607
+ )
608
+
609
+ predict_args = dict(
610
+ fn=predict,
611
+ inputs=input_widgets,
612
+ outputs=output_widgets,
613
+ show_progress=True,
614
+ )
615
+
616
+ retry_args = dict(
617
+ fn=retry,
618
+ inputs=input_widgets,
619
+ outputs=output_widgets,
620
+ show_progress=True,
621
+ )
622
+
623
+ reset_args = dict(
624
+ fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
625
+ )
626
+
627
+ predict_events = [
628
+ text_box.submit(**transfer_input_args).then(**predict_args),
629
+ submitBtn.click(**transfer_input_args).then(**predict_args),
630
+ ]
631
+
632
+ emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
633
+ emptyBtn.click(**reset_args)
634
+ retryBtn.click(**retry_args)
635
+
636
+ delLastBtn.click(
637
+ delete_last_conversation,
638
+ [chatbot, history],
639
+ output_widgets,
640
+ show_progress=True,
641
+ )
642
+
643
+ cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
644
+
645
+ return demo
646
+
647
+
648
+ if __name__ == "__main__":
649
+ parser = ArgumentParser()
650
+ parser.add_argument("--model_name", type=str, default="deepseek-ai/deepseek-vl2-small", choices=MODELS, help="model name")
651
+ parser.add_argument("--local_path", type=str, default="", help="huggingface ckpt, optional")
652
+ parser.add_argument("--ip", type=str, default="0.0.0.0", help="ip address")
653
+ parser.add_argument("--port", type=int, default=37913, help="port number")
654
+ parser.add_argument("--root_path", type=str, default="", help="root path")
655
+ parser.add_argument("--lazy_load", action='store_true')
656
+ parser.add_argument("--chunk_size", type=int, default=512,
657
+ help="chunk size for the model for prefiiling. "
658
+ "When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling."
659
+ "Otherwise, default value is -1, which means we do not use incremental_prefilling.")
660
+ args = parser.parse_args()
661
+
662
+ demo = build_demo(args)
663
+ demo.title = "DeepSeek-VL2 Chatbot"
664
+
665
+ reload_javascript()
666
+ demo.queue(concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS).launch(
667
+ # share=False,
668
+ share=True,
669
+ favicon_path="deepseek_vl2/serve/assets/favicon.ico",
670
+ )