Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch DeepSeek model and compatible with both DeepSeekV2 and DeepSeekV3""" | |
import math | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import torch.distributed as dist | |
from einops import repeat | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | |
from transformers.models.llama.modeling_llama import ( | |
LlamaAttention, | |
LlamaFlashAttention2 | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.pytorch_utils import ( | |
ALL_LAYERNORM_LAYERS, | |
is_torch_greater_or_equal_than_1_13, | |
) | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.utils.import_utils import is_torch_fx_available | |
from .configuration_deepseek import DeepseekV2Config | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. | |
# It means that the function will not be traced through and simply appear as a node in the graph. | |
if is_torch_fx_available(): | |
if not is_torch_greater_or_equal_than_1_13: | |
import torch.fx | |
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "DeepseekV2Config" | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad( | |
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) | |
) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
class DeepseekV2RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
DeepseekV2RMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm) | |
class DeepseekV2RotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / ( | |
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | |
) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, | |
device=self.inv_freq.device, | |
dtype=torch.get_default_dtype(), | |
) | |
self.max_seq_len_cached = None | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | |
) | |
freqs = torch.outer(t, self.inv_freq.to(t.device)) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2 | |
class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding): | |
"""DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
def __init__( | |
self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0, | |
): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | |
) | |
t = t / self.scaling_factor | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2 | |
class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding): | |
"""DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
def __init__( | |
self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0, | |
): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
if seq_len > self.max_position_embeddings: | |
base = self.base * ( | |
(self.scaling_factor * seq_len / self.max_position_embeddings) | |
- (self.scaling_factor - 1) | |
) ** (self.dim / (self.dim - 2)) | |
inv_freq = 1.0 / ( | |
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | |
) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | |
) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
# Inverse dim formula to find dim based on number of rotations | |
def yarn_find_correction_dim( | |
num_rotations, dim, base=10000, max_position_embeddings=2048 | |
): | |
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( | |
2 * math.log(base) | |
) | |
# Find dim range bounds based on rotations | |
def yarn_find_correction_range( | |
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 | |
): | |
low = math.floor( | |
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings) | |
) | |
high = math.ceil( | |
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings) | |
) | |
return max(low, 0), min(high, dim - 1) # Clamp values just in case | |
def yarn_get_mscale(scale=1, mscale=1): | |
if scale <= 1: | |
return 1.0 | |
return 0.1 * mscale * math.log(scale) + 1.0 | |
def yarn_linear_ramp_mask(min, max, dim): | |
if min == max: | |
max += 0.001 # Prevent singularity | |
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) | |
ramp_func = torch.clamp(linear_func, 0, 1) | |
return ramp_func | |
class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding): | |
def __init__( | |
self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None, | |
scaling_factor=1.0, | |
original_max_position_embeddings=4096, | |
beta_fast=32, | |
beta_slow=1, | |
mscale=1, | |
mscale_all_dim=0, | |
): | |
self.scaling_factor = scaling_factor | |
self.original_max_position_embeddings = original_max_position_embeddings | |
self.beta_fast = beta_fast | |
self.beta_slow = beta_slow | |
self.mscale = mscale | |
self.mscale_all_dim = mscale_all_dim | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
dim = self.dim | |
freq_extra = 1.0 / ( | |
self.base | |
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) | |
) | |
freq_inter = 1.0 / ( | |
self.scaling_factor | |
* self.base | |
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) | |
) | |
low, high = yarn_find_correction_range( | |
self.beta_fast, | |
self.beta_slow, | |
dim, | |
self.base, | |
self.original_max_position_embeddings, | |
) | |
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( | |
device=device, dtype=torch.float32 | |
) | |
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
t = torch.arange(seq_len, device=device, dtype=torch.float32) | |
freqs = torch.outer(t, inv_freq) | |
_mscale = float( | |
yarn_get_mscale(self.scaling_factor, self.mscale) | |
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) | |
) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False | |
) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
b, h, s, d = q.shape | |
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) | |
b, h, s, d = k.shape | |
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class DeepseekV2MLP(nn.Module): | |
def __init__(self, config, hidden_size=None, intermediate_size=None): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size | |
self.intermediate_size = ( | |
config.intermediate_size if intermediate_size is None else intermediate_size | |
) | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, x): | |
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
return down_proj | |
class MoEGate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.top_k = config.num_experts_per_tok | |
self.n_routed_experts = config.n_routed_experts | |
self.routed_scaling_factor = config.routed_scaling_factor | |
self.scoring_func = config.scoring_func | |
self.alpha = config.aux_loss_alpha | |
self.seq_aux = config.seq_aux | |
self.topk_method = config.topk_method | |
self.n_group = config.n_group | |
self.topk_group = config.topk_group | |
# topk selection algorithm | |
self.norm_topk_prob = config.norm_topk_prob | |
self.gating_dim = config.hidden_size | |
self.weight = nn.Parameter( | |
torch.empty((self.n_routed_experts, self.gating_dim)) | |
) | |
if self.topk_method == "noaux_tc": | |
self.e_score_correction_bias = nn.Parameter( | |
torch.empty((self.n_routed_experts)) | |
) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
import torch.nn.init as init | |
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
def forward(self, hidden_states): | |
bsz, seq_len, h = hidden_states.shape | |
### compute gating score | |
hidden_states = hidden_states.view(-1, h) | |
logits = F.linear( | |
hidden_states.type(torch.float32), self.weight.type(torch.float32), None | |
) | |
if self.scoring_func == "softmax": | |
scores = logits.softmax(dim=-1, dtype=torch.float32) | |
elif self.scoring_func == "sigmoid": | |
scores = logits.sigmoid() | |
else: | |
raise NotImplementedError( | |
f"insupportable scoring function for MoE gating: {self.scoring_func}" | |
) | |
### select top-k experts | |
if self.topk_method == "greedy": | |
topk_weight, topk_idx = torch.topk( | |
scores, k=self.top_k, dim=-1, sorted=False | |
) | |
elif self.topk_method == "group_limited_greedy": | |
group_scores = ( | |
scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values | |
) # [n, n_group] | |
group_idx = torch.topk( | |
group_scores, k=self.topk_group, dim=-1, sorted=False | |
)[ | |
1 | |
] # [n, top_k_group] | |
group_mask = torch.zeros_like(group_scores) # [n, n_group] | |
group_mask.scatter_(1, group_idx, 1) # [n, n_group] | |
score_mask = ( | |
group_mask.unsqueeze(-1) | |
.expand( | |
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group | |
) | |
.reshape(bsz * seq_len, -1) | |
) # [n, e] | |
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] | |
topk_weight, topk_idx = torch.topk( | |
tmp_scores, k=self.top_k, dim=-1, sorted=False | |
) | |
elif self.topk_method == "noaux_tc": | |
assert not self.training | |
scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0) | |
group_scores = ( | |
scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1) | |
) # [n, n_group] | |
group_idx = torch.topk( | |
group_scores, k=self.topk_group, dim=-1, sorted=False | |
)[ | |
1 | |
] # [n, top_k_group] | |
group_mask = torch.zeros_like(group_scores) # [n, n_group] | |
group_mask.scatter_(1, group_idx, 1) # [n, n_group] | |
score_mask = ( | |
group_mask.unsqueeze(-1) | |
.expand( | |
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group | |
) | |
.reshape(bsz * seq_len, -1) | |
) # [n, e] | |
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e] | |
_, topk_idx = torch.topk( | |
tmp_scores, k=self.top_k, dim=-1, sorted=False | |
) | |
topk_weight = scores.gather(1, topk_idx) | |
### norm gate to sum 1 | |
if self.top_k > 1 and self.norm_topk_prob: | |
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 | |
topk_weight = topk_weight / denominator * self.routed_scaling_factor | |
else: | |
topk_weight = topk_weight * self.routed_scaling_factor | |
### expert-level computation auxiliary loss | |
if self.training and self.alpha > 0.0: | |
scores_for_aux = scores | |
aux_topk = self.top_k | |
# always compute aux loss based on the naive greedy topk method | |
topk_idx_for_aux_loss = topk_idx.view(bsz, -1) | |
if self.seq_aux: | |
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) | |
ce = torch.zeros( | |
bsz, self.n_routed_experts, device=hidden_states.device | |
) | |
ce.scatter_add_( | |
1, | |
topk_idx_for_aux_loss, | |
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device), | |
).div_(seq_len * aux_topk / self.n_routed_experts) | |
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum( | |
dim=1 | |
).mean() * self.alpha | |
else: | |
mask_ce = F.one_hot( | |
topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts | |
) | |
ce = mask_ce.float().mean(0) | |
Pi = scores_for_aux.mean(0) | |
fi = ce * self.n_routed_experts | |
aux_loss = (Pi * fi).sum() * self.alpha | |
else: | |
aux_loss = None | |
return topk_idx, topk_weight, aux_loss | |
class AddAuxiliaryLoss(torch.autograd.Function): | |
""" | |
The trick function of adding auxiliary (aux) loss, | |
which includes the gradient of the aux loss during backpropagation. | |
""" | |
def forward(ctx, x, loss): | |
assert loss.numel() == 1 | |
ctx.dtype = loss.dtype | |
ctx.required_aux_loss = loss.requires_grad | |
return x | |
def backward(ctx, grad_output): | |
grad_loss = None | |
if ctx.required_aux_loss: | |
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device) | |
return grad_output, grad_loss | |
class DeepseekV2MoE(nn.Module): | |
""" | |
A mixed expert module containing shared experts. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.num_experts_per_tok = config.num_experts_per_tok | |
if hasattr(config, "ep_size") and config.ep_size > 1: | |
assert config.ep_size == dist.get_world_size() | |
self.ep_size = config.ep_size | |
self.experts_per_rank = config.n_routed_experts // config.ep_size | |
self.ep_rank = dist.get_rank() | |
self.experts = nn.ModuleList( | |
[ | |
( | |
DeepseekV2MLP( | |
config, intermediate_size=config.moe_intermediate_size | |
) | |
if i >= self.ep_rank * self.experts_per_rank | |
and i < (self.ep_rank + 1) * self.experts_per_rank | |
else None | |
) | |
for i in range(config.n_routed_experts) | |
] | |
) | |
else: | |
self.ep_size = 1 | |
self.experts_per_rank = config.n_routed_experts | |
self.ep_rank = 0 | |
self.experts = nn.ModuleList( | |
[ | |
DeepseekV2MLP( | |
config, intermediate_size=config.moe_intermediate_size | |
) | |
for i in range(config.n_routed_experts) | |
] | |
) | |
self.gate = MoEGate(config) | |
if config.n_shared_experts is not None: | |
intermediate_size = config.moe_intermediate_size * config.n_shared_experts | |
self.shared_experts = DeepseekV2MLP( | |
config=config, intermediate_size=intermediate_size | |
) | |
def forward(self, hidden_states): | |
identity = hidden_states | |
orig_shape = hidden_states.shape | |
topk_idx, topk_weight, aux_loss = self.gate(hidden_states) | |
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) | |
flat_topk_idx = topk_idx.view(-1) | |
if self.training: | |
hidden_states = hidden_states.repeat_interleave( | |
self.num_experts_per_tok, dim=0 | |
) | |
y = torch.empty_like(hidden_states) | |
for i, expert in enumerate(self.experts): | |
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) | |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | |
y = y.to(hidden_states.dtype).view(*orig_shape) | |
y = AddAuxiliaryLoss.apply(y, aux_loss) | |
else: | |
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) | |
if self.config.n_shared_experts is not None: | |
y = y + self.shared_experts(identity) | |
return y | |
def moe_infer(self, x, topk_ids, topk_weight): | |
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) | |
cnts.scatter_(1, topk_ids, 1) | |
tokens_per_expert = cnts.sum(dim=0) | |
idxs = topk_ids.view(-1).argsort() | |
sorted_tokens = x[idxs // topk_ids.shape[1]] | |
sorted_tokens_shape = sorted_tokens.shape | |
if self.ep_size > 1: | |
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1) | |
tokens_per_expert_group = tokens_per_expert.new_empty( | |
tokens_per_expert.shape[0] | |
) | |
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) | |
output_splits = ( | |
tokens_per_expert_group.view(self.ep_size, -1) | |
.sum(1) | |
.cpu() | |
.numpy() | |
.tolist() | |
) | |
gathered_tokens = sorted_tokens.new_empty( | |
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1] | |
) | |
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() | |
dist.all_to_all( | |
list(gathered_tokens.split(output_splits)), | |
list(sorted_tokens.split(input_split_sizes)), | |
) | |
tokens_per_expert_post_gather = tokens_per_expert_group.view( | |
self.ep_size, self.experts_per_rank | |
).sum(dim=0) | |
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32) | |
s = 0 | |
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): | |
gatherd_idxs[s : s + k] = i % self.experts_per_rank | |
s += k | |
gatherd_idxs = gatherd_idxs.argsort() | |
sorted_tokens = gathered_tokens[gatherd_idxs] | |
tokens_per_expert = tokens_per_expert_post_gather | |
tokens_per_expert = tokens_per_expert.cpu().numpy() | |
outputs = [] | |
start_idx = 0 | |
for i, num_tokens in enumerate(tokens_per_expert): | |
end_idx = start_idx + num_tokens | |
if num_tokens == 0: | |
continue | |
expert = self.experts[i + self.ep_rank * self.experts_per_rank] | |
tokens_for_this_expert = sorted_tokens[start_idx:end_idx] | |
expert_out = expert(tokens_for_this_expert) | |
outputs.append(expert_out) | |
start_idx = end_idx | |
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) | |
if self.ep_size > 1: | |
new_x = torch.empty_like(outs) | |
new_x[gatherd_idxs] = outs | |
gathered_tokens = new_x.new_empty(*sorted_tokens_shape) | |
dist.all_to_all( | |
list(gathered_tokens.split(input_split_sizes)), | |
list(new_x.split(output_splits)), | |
) | |
outs = gathered_tokens | |
new_x = torch.empty_like(outs) | |
new_x[idxs] = outs | |
final_out = ( | |
new_x.view(*topk_ids.shape, -1) | |
.type(topk_weight.dtype) | |
.mul_(topk_weight.unsqueeze(dim=-1)) | |
.sum(dim=1) | |
.type(new_x.dtype) | |
) | |
return final_out | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand( | |
batch, num_key_value_heads, n_rep, slen, head_dim | |
) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2 | |
class DeepseekV2Attention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.attention_dropout = config.attention_dropout | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.q_lora_rank = config.q_lora_rank | |
self.qk_rope_head_dim = config.qk_rope_head_dim | |
self.kv_lora_rank = config.kv_lora_rank | |
self.v_head_dim = config.v_head_dim | |
self.qk_nope_head_dim = config.qk_nope_head_dim | |
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim | |
self.is_causal = True | |
if self.q_lora_rank is None: | |
self.q_proj = nn.Linear( | |
self.hidden_size, self.num_heads * self.q_head_dim, bias=False | |
) | |
else: | |
self.q_a_proj = nn.Linear( | |
self.hidden_size, config.q_lora_rank, bias=config.attention_bias | |
) | |
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank) | |
self.q_b_proj = nn.Linear( | |
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False | |
) | |
self.kv_a_proj_with_mqa = nn.Linear( | |
self.hidden_size, | |
config.kv_lora_rank + config.qk_rope_head_dim, | |
bias=config.attention_bias, | |
) | |
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank) | |
self.kv_b_proj = nn.Linear( | |
config.kv_lora_rank, | |
self.num_heads | |
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), | |
bias=False, | |
) | |
self.o_proj = nn.Linear( | |
self.num_heads * self.v_head_dim, | |
self.hidden_size, | |
bias=config.attention_bias, | |
) | |
self._init_rope() | |
self.softmax_scale = self.q_head_dim ** (-0.5) | |
if self.config.rope_scaling is not None: | |
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) | |
scaling_factor = self.config.rope_scaling["factor"] | |
if mscale_all_dim: | |
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) | |
self.softmax_scale = self.softmax_scale * mscale * mscale | |
def _init_rope(self): | |
if self.config.rope_scaling is None: | |
self.rotary_emb = DeepseekV2RotaryEmbedding( | |
self.qk_rope_head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
else: | |
scaling_type = self.config.rope_scaling["type"] | |
scaling_factor = self.config.rope_scaling["factor"] | |
if scaling_type == "linear": | |
self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding( | |
self.qk_rope_head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
elif scaling_type == "dynamic": | |
self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding( | |
self.qk_rope_head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
elif scaling_type == "yarn": | |
kwargs = { | |
key: self.config.rope_scaling[key] | |
for key in [ | |
"original_max_position_embeddings", | |
"beta_fast", | |
"beta_slow", | |
"mscale", | |
"mscale_all_dim", | |
] | |
if key in self.config.rope_scaling | |
} | |
self.rotary_emb = DeepseekV2YarnRotaryEmbedding( | |
self.qk_rope_head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
**kwargs, | |
) | |
else: | |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return ( | |
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
bsz, q_len, _ = hidden_states.size() | |
if self.q_lora_rank is None: | |
q = self.q_proj(hidden_states) | |
else: | |
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) | |
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) | |
q_nope, q_pe = torch.split( | |
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 | |
) | |
compressed_kv = self.kv_a_proj_with_mqa(hidden_states) | |
compressed_kv, k_pe = torch.split( | |
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 | |
) | |
compressed_kv = self.kv_a_layernorm(compressed_kv) | |
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) | |
kv_seq_len = k_pe.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(q_pe, seq_len=kv_seq_len) | |
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
compressed_kv = compressed_kv.unsqueeze(1) | |
k_pe, compressed_kv = past_key_value.update(k_pe, compressed_kv, self.layer_idx, cache_kwargs) | |
compressed_kv = compressed_kv.squeeze(1) | |
kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank) | |
q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :] | |
out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :] | |
q_nope = torch.matmul(q_nope, q_absorb) | |
attn_weights = (torch.matmul(q_pe, k_pe.mT) + | |
torch.matmul(q_nope, compressed_kv.unsqueeze(-3).mT)) * self.softmax_scale | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
assert attention_mask is not None | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax( | |
attn_weights, dim=-1, dtype=torch.float32 | |
).to(q_pe.dtype) | |
attn_weights = nn.functional.dropout( | |
attn_weights, p=self.attention_dropout, training=self.training | |
) | |
attn_output = torch.einsum('bhql,blc->bhqc', attn_weights, compressed_kv) | |
attn_output = torch.matmul(attn_output, out_absorb.mT) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2 | |
class DeepseekV2FlashAttention2(DeepseekV2Attention): | |
""" | |
DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# DeepseekV2FlashAttention2 attention does not support output_attentions | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
# overwrite attention_mask with padding_mask | |
attention_mask = kwargs.pop("padding_mask") | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
if self.q_lora_rank is None: | |
q = self.q_proj(hidden_states) | |
else: | |
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) | |
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) | |
q_nope, q_pe = torch.split( | |
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 | |
) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
compressed_kv = self.kv_a_proj_with_mqa(hidden_states) | |
compressed_kv, k_pe = torch.split( | |
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 | |
) | |
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) | |
kv = ( | |
self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) | |
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) | |
.transpose(1, 2) | |
) | |
k_nope, value_states = torch.split( | |
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 | |
) | |
kv_seq_len = value_states.shape[-2] | |
kv_seq_len = value_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) | |
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) | |
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope | |
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe | |
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) | |
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope | |
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe | |
if self.q_head_dim != self.v_head_dim: | |
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) | |
# TODO: support compressed_kv for kv_cache (instead of key_states, value_states) in flash_attention version | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, cache_kwargs | |
) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.attention_dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (DeepseekV2RMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
# Handle the case where the model is quantized | |
if hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
elif torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
else: | |
target_dtype = ( | |
self.q_proj.weight.dtype | |
if self.q_lora_rank is None | |
else self.q_a_proj.weight.dtype | |
) | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = self._flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
softmax_scale=self.softmax_scale, | |
) | |
if self.q_head_dim != self.v_head_dim: | |
attn_output = attn_output[:, :, :, : self.v_head_dim] | |
attn_output = attn_output.reshape( | |
bsz, q_len, self.num_heads * self.v_head_dim | |
).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
query_length, | |
dropout=0.0, | |
softmax_scale=None, | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`int`, *optional*): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
( | |
query_states, | |
key_states, | |
value_states, | |
indices_q, | |
cu_seq_lens, | |
max_seq_lens, | |
) = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input( | |
attn_output_unpad, indices_q, batch_size, query_length | |
) | |
else: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
return attn_output | |
def _upad_input( | |
self, query_layer, key_layer, value_layer, attention_mask, query_length | |
): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
indices_k, | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
indices_k, | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), | |
indices_k, | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( | |
query_layer, attention_mask | |
) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
ATTENTION_CLASSES = { | |
"eager": DeepseekV2Attention, | |
"flash_attention_2": DeepseekV2FlashAttention2, | |
"mla_eager": DeepseekV2Attention, | |
"mla_flash_attention_2": DeepseekV2FlashAttention2, | |
"mha_eager": LlamaAttention, | |
"mha_flash_attention_2": LlamaFlashAttention2 | |
} | |
class DeepseekV2DecoderLayer(nn.Module): | |
def __init__(self, config: DeepseekV2Config, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
if config.use_mla: | |
attn_implementation = "mla_" + config._attn_implementation | |
else: | |
attn_implementation = "mha_" + config._attn_implementation | |
self.self_attn = ATTENTION_CLASSES[attn_implementation]( | |
config=config, layer_idx=layer_idx | |
) | |
self.mlp = ( | |
DeepseekV2MoE(config) | |
if ( | |
config.n_routed_experts is not None | |
and layer_idx >= config.first_k_dense_replace | |
and layer_idx % config.moe_layer_freq == 0 | |
) | |
else DeepseekV2MLP(config) | |
) | |
self.input_layernorm = DeepseekV2RMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps | |
) | |
self.post_attention_layernorm = DeepseekV2RMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
**kwargs, | |
) -> Tuple[ | |
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | |
]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): | |
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | |
query_sequence_length, key_sequence_length)` if default attention is used. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
if "padding_mask" in kwargs: | |
warnings.warn( | |
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | |
) | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
**kwargs, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
DeepseekV2_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`DeepseekV2Config`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class DeepseekV2PreTrainedModel(PreTrainedModel): | |
config_class = DeepseekV2Config | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["DeepseekV2DecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
DeepseekV2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
Two formats are allowed: | |
- a [`~cache_utils.Cache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
cache format. | |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
legacy cache format will be returned. | |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class DeepseekV2Model(DeepseekV2PreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`] | |
Args: | |
config: DeepseekV2Config | |
""" | |
def __init__(self, config: DeepseekV2Config): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding( | |
config.vocab_size, config.hidden_size, self.padding_idx | |
) | |
self.layers = nn.ModuleList( | |
[ | |
DeepseekV2DecoderLayer(config, layer_idx) | |
for layer_idx in range(config.num_hidden_layers) | |
] | |
) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
"You cannot specify both input_ids and inputs_embeds at the same time" | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape[:2] | |
elif inputs_embeds is not None: | |
batch_size, seq_length = inputs_embeds.shape[:2] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." | |
) | |
use_cache = False | |
past_key_values_length = 0 | |
if use_cache: | |
use_legacy_cache = not isinstance(past_key_values, Cache) | |
if use_legacy_cache: | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
past_key_values_length = past_key_values.get_usable_length(seq_length) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device, | |
) | |
position_ids = position_ids.unsqueeze(0) | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if self._use_flash_attention_2: | |
# 2d mask is passed through the layers | |
attention_mask = ( | |
attention_mask | |
if (attention_mask is not None and 0 in attention_mask) | |
else None | |
) | |
else: | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
) | |
# embed positions | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = None | |
if use_cache: | |
next_cache = ( | |
next_decoder_cache.to_legacy_cache() | |
if use_legacy_cache | |
else next_decoder_cache | |
) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
if v is not None | |
) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = DeepseekV2Model(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM | |
>>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | |
>>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
```""" | |
output_attentions = ( | |
output_attentions | |
if output_attentions is not None | |
else self.config.output_attentions | |
) | |
output_hidden_states = ( | |
output_hidden_states | |
if output_hidden_states is not None | |
else self.config.output_hidden_states | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
**kwargs, | |
): | |
past_length = 0 | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
max_cache_length = past_key_values.get_max_length() | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
max_cache_length = None | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
if ( | |
max_cache_length is not None | |
and attention_mask is not None | |
and cache_length + input_ids.shape[1] > max_cache_length | |
): | |
attention_mask = attention_mask[:, -max_cache_length:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1]:] | |
if self.generation_config.cache_implementation == "static": | |
# generation with static cache | |
cache_position = kwargs.get("cache_position", None) | |
if cache_position is None: | |
past_length = 0 | |
else: | |
past_length = cache_position[-1] + 1 | |
input_ids = input_ids[:, past_length:] | |
position_ids = position_ids[:, past_length:] | |
# TODO @gante we should only keep a `cache_position` in generate, and do +=1. | |
# same goes for position ids. Could also help with continued generation. | |
cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise | |
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 | |
# TODO: use `next_tokens` directly instead. | |
model_inputs = {"input_ids": input_ids.contiguous()} | |
model_inputs.update( | |
{ | |
"position_ids": position_ids.contiguous(), | |
"cache_position": cache_position, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past | |
), | |
) | |
return reordered_past | |
class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = DeepseekV2Model(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
transformer_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError( | |
"Cannot handle batch sizes > 1 if no padding token is defined." | |
) | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
sequence_lengths = ( | |
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
).to(logits.device) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[ | |
torch.arange(batch_size, device=logits.device), sequence_lengths | |
] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and ( | |
labels.dtype == torch.long or labels.dtype == torch.int | |
): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
pooled_logits.view(-1, self.num_labels), labels.view(-1) | |
) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + transformer_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |