Spaces:
Running
on
Zero
Running
on
Zero
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
| class DeepseekV2Config(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek | |
| model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
| defaults will yield a similar configuration to that of the DeepSeek-V2 with multi-latent attention. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 102400): | |
| Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`DeepseekV2Model`] | |
| hidden_size (`int`, *optional*, defaults to 4096): | |
| Dimension of the hidden representations. | |
| intermediate_size (`int`, *optional*, defaults to 11008): | |
| Dimension of the MLP representations. | |
| moe_intermediate_size (`int`, *optional*, defaults to 1407): | |
| Dimension of the MoE representations. | |
| num_hidden_layers (`int`, *optional*, defaults to 32): | |
| Number of hidden layers in the Transformer decoder. | |
| num_attention_heads (`int`, *optional*, defaults to 32): | |
| Number of attention heads for each attention layer in the Transformer decoder. | |
| n_shared_experts (`int`, *optional*, defaults to None): | |
| Number of shared experts, None means dense model. | |
| n_routed_experts (`int`, *optional*, defaults to None): | |
| Number of routed experts, None means dense model. | |
| routed_scaling_factor (`float`, *optional*, defaults to 1.0): | |
| Scaling factor or routed experts. | |
| topk_method (`str`, *optional*, defaults to `gready`): | |
| Topk method used in routed gate. | |
| n_group (`int`, *optional*, defaults to None): | |
| Number of groups for routed experts. | |
| topk_group (`int`, *optional*, defaults to None): | |
| Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). | |
| num_experts_per_tok (`int`, *optional*, defaults to None): | |
| Number of selected experts, None means dense model. | |
| moe_layer_freq (`int`, *optional*, defaults to 1): | |
| The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. | |
| first_k_dense_replace (`int`, *optional*, defaults to 0): | |
| Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). | |
| \--k dense layers--/ | |
| norm_topk_prob (`bool`, *optional*, defaults to False): | |
| Whether to normalize the weights of the routed experts. | |
| scoring_func (`str`, *optional*, defaults to 'softmax'): | |
| Method of computing expert weights. | |
| aux_loss_alpha (`float`, *optional*, defaults to 0.001): | |
| Auxiliary loss weight coefficient. | |
| seq_aux = (`bool`, *optional*, defaults to True): | |
| Whether to compute the auxiliary loss for each individual sample. | |
| num_key_value_heads (`int`, *optional*): | |
| This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
| `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
| `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
| converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
| by meanpooling all the original heads within that group. For more details checkout [this | |
| paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
| `num_attention_heads`. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
| The non-linear activation function (function or string) in the decoder. | |
| max_position_embeddings (`int`, *optional*, defaults to 2048): | |
| The maximum sequence length that this model might ever be used with. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
| The epsilon used by the rms normalization layers. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| relevant if `config.is_decoder=True`. | |
| pad_token_id (`int`, *optional*): | |
| Padding token id. | |
| bos_token_id (`int`, *optional*, defaults to 1): | |
| Beginning of stream token id. | |
| eos_token_id (`int`, *optional*, defaults to 2): | |
| End of stream token id. | |
| pretraining_tp (`int`, *optional*, defaults to 1): | |
| Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | |
| document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | |
| necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | |
| issue](https://github.com/pytorch/pytorch/issues/76232). | |
| tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
| Whether to tie weight embeddings | |
| rope_theta (`float`, *optional*, defaults to 10000.0): | |
| The base period of the RoPE embeddings. | |
| rope_scaling (`Dict`, *optional*): | |
| Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | |
| strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | |
| `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | |
| `max_position_embeddings` to the expected new maximum. | |
| attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | |
| Whether to use a bias in the query, key, value and output projection layers during self-attention. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| use_mla (`bool`, *optional*, defaults to `True`): Use multi-latent attention or multi-head attention. If True, | |
| the model will use multi-latent attention, otherwise, it will use multi-head attention. | |
| ```python | |
| >>> from transformers import DeepseekV2Model, DeepseekV2Config | |
| >>> # Initializing a Deepseek-V2 style configuration | |
| >>> configuration = DeepseekV2Config() | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "deepseek_v2" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| def __init__( | |
| self, | |
| vocab_size=102400, | |
| hidden_size=4096, | |
| intermediate_size=11008, | |
| moe_intermediate_size = 1407, | |
| num_hidden_layers=30, | |
| num_attention_heads=32, | |
| num_key_value_heads=32, | |
| n_shared_experts = None, | |
| n_routed_experts = None, | |
| ep_size = 1, | |
| routed_scaling_factor = 1.0, | |
| kv_lora_rank = 512, | |
| q_lora_rank = 1536, | |
| qk_rope_head_dim = 64, | |
| v_head_dim = 128, | |
| qk_nope_head_dim = 128, | |
| topk_method = 'gready', | |
| n_group = None, | |
| topk_group = None, | |
| num_experts_per_tok = None, | |
| moe_layer_freq = 1, | |
| first_k_dense_replace = 0, | |
| norm_topk_prob = False, | |
| scoring_func = 'softmax', | |
| aux_loss_alpha = 0.001, | |
| seq_aux = True, | |
| hidden_act="silu", | |
| max_position_embeddings=2048, | |
| initializer_range=0.02, | |
| rms_norm_eps=1e-6, | |
| use_cache=True, | |
| pad_token_id=None, | |
| bos_token_id=100000, | |
| eos_token_id=100001, | |
| pretraining_tp=1, | |
| tie_word_embeddings=False, | |
| rope_theta=10000.0, | |
| rope_scaling=None, | |
| attention_bias=False, | |
| attention_dropout=0.0, | |
| use_mla=True, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.moe_intermediate_size = moe_intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.n_shared_experts = n_shared_experts | |
| self.n_routed_experts = n_routed_experts | |
| self.ep_size = ep_size | |
| self.routed_scaling_factor = routed_scaling_factor | |
| self.kv_lora_rank = kv_lora_rank | |
| self.q_lora_rank = q_lora_rank | |
| self.qk_rope_head_dim = qk_rope_head_dim | |
| self.v_head_dim = v_head_dim | |
| self.qk_nope_head_dim = qk_nope_head_dim | |
| self.topk_method = topk_method | |
| self.n_group = n_group | |
| self.topk_group = topk_group | |
| self.num_experts_per_tok = num_experts_per_tok | |
| self.moe_layer_freq = moe_layer_freq | |
| self.first_k_dense_replace = first_k_dense_replace | |
| self.norm_topk_prob = norm_topk_prob | |
| self.scoring_func = scoring_func | |
| self.aux_loss_alpha = aux_loss_alpha | |
| self.seq_aux = seq_aux | |
| # for backward compatibility | |
| if num_key_value_heads is None: | |
| num_key_value_heads = num_attention_heads | |
| self.num_key_value_heads = num_key_value_heads | |
| self.hidden_act = hidden_act | |
| self.initializer_range = initializer_range | |
| self.rms_norm_eps = float(rms_norm_eps) | |
| self.pretraining_tp = pretraining_tp | |
| self.use_cache = use_cache | |
| self.rope_theta = rope_theta | |
| self.rope_scaling = rope_scaling | |
| self.attention_bias = attention_bias | |
| self.attention_dropout = attention_dropout | |
| self.use_mla = use_mla | |
| super().__init__( | |
| pad_token_id=pad_token_id, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| tie_word_embeddings=tie_word_embeddings, | |
| **kwargs, | |
| ) | |