Spaces:
Runtime error
Runtime error
deepozzzie
commited on
Commit
·
f9a51f1
1
Parent(s):
90d9fe0
add messages
Browse files
app.py
CHANGED
|
@@ -23,12 +23,19 @@ def pdf_changes(pdf_doc, open_ai_key):
|
|
| 23 |
if openai_key is not None:
|
| 24 |
os.environ['OPENAI_API_KEY'] = open_ai_key
|
| 25 |
loader = OnlinePDFLoader(pdf_doc.name)
|
|
|
|
| 26 |
documents = loader.load()
|
|
|
|
| 27 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
|
|
|
| 28 |
texts = text_splitter.split_documents(documents)
|
|
|
|
| 29 |
embeddings = OpenAIEmbeddings()
|
|
|
|
| 30 |
db = Chroma.from_documents(texts, embeddings)
|
|
|
|
| 31 |
retriever = db.as_retriever()
|
|
|
|
| 32 |
global qa
|
| 33 |
qa = ConversationalRetrievalChain.from_llm(
|
| 34 |
llm=OpenAI(temperature=0.5),
|
|
@@ -40,15 +47,20 @@ def pdf_changes(pdf_doc, open_ai_key):
|
|
| 40 |
|
| 41 |
def add_text(history, text):
|
| 42 |
history = history + [(text, None)]
|
|
|
|
| 43 |
return history, ""
|
| 44 |
|
| 45 |
def bot(history):
|
| 46 |
response = infer(history[-1][0], history)
|
|
|
|
|
|
|
| 47 |
history[-1][1] = ""
|
| 48 |
|
| 49 |
for character in response:
|
| 50 |
history[-1][1] += character
|
|
|
|
| 51 |
time.sleep(0.05)
|
|
|
|
| 52 |
yield history
|
| 53 |
|
| 54 |
|
|
@@ -64,6 +76,8 @@ def infer(question, history):
|
|
| 64 |
query = question
|
| 65 |
result = qa({"question": query, "chat_history": chat_history})
|
| 66 |
#print(result)
|
|
|
|
|
|
|
| 67 |
return result["answer"]
|
| 68 |
|
| 69 |
css="""
|
|
|
|
| 23 |
if openai_key is not None:
|
| 24 |
os.environ['OPENAI_API_KEY'] = open_ai_key
|
| 25 |
loader = OnlinePDFLoader(pdf_doc.name)
|
| 26 |
+
print(loader)
|
| 27 |
documents = loader.load()
|
| 28 |
+
print(documents)
|
| 29 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 30 |
+
print(text_splitter)
|
| 31 |
texts = text_splitter.split_documents(documents)
|
| 32 |
+
print(texts)
|
| 33 |
embeddings = OpenAIEmbeddings()
|
| 34 |
+
print(embeddings)
|
| 35 |
db = Chroma.from_documents(texts, embeddings)
|
| 36 |
+
print(db)
|
| 37 |
retriever = db.as_retriever()
|
| 38 |
+
print(retriever)
|
| 39 |
global qa
|
| 40 |
qa = ConversationalRetrievalChain.from_llm(
|
| 41 |
llm=OpenAI(temperature=0.5),
|
|
|
|
| 47 |
|
| 48 |
def add_text(history, text):
|
| 49 |
history = history + [(text, None)]
|
| 50 |
+
print(history)
|
| 51 |
return history, ""
|
| 52 |
|
| 53 |
def bot(history):
|
| 54 |
response = infer(history[-1][0], history)
|
| 55 |
+
print('bot response:')
|
| 56 |
+
print(response)
|
| 57 |
history[-1][1] = ""
|
| 58 |
|
| 59 |
for character in response:
|
| 60 |
history[-1][1] += character
|
| 61 |
+
print("history")
|
| 62 |
time.sleep(0.05)
|
| 63 |
+
print(history)
|
| 64 |
yield history
|
| 65 |
|
| 66 |
|
|
|
|
| 76 |
query = question
|
| 77 |
result = qa({"question": query, "chat_history": chat_history})
|
| 78 |
#print(result)
|
| 79 |
+
print("infer result")
|
| 80 |
+
print(result)
|
| 81 |
return result["answer"]
|
| 82 |
|
| 83 |
css="""
|