deepozzzie commited on
Commit
752610d
·
1 Parent(s): d862e0f
Files changed (1) hide show
  1. app.py +2 -13
app.py CHANGED
@@ -17,31 +17,26 @@ from langchain.vectorstores import Chroma
17
  from langchain.chains import ConversationalRetrievalChain
18
 
19
  def loading_pdf():
 
20
  return "Loading..."
21
 
22
  def pdf_changes(pdf_doc, open_ai_key):
 
23
  if openai_key is not None:
24
  os.environ['OPENAI_API_KEY'] = open_ai_key
25
  loader = OnlinePDFLoader(pdf_doc.name)
26
- print('loader\n\n\n')
27
  print(loader)
28
  documents = loader.load()
29
- print('documents\n\n\n')
30
  print(documents)
31
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
32
- print('splitter\n\n\n')
33
  print(text_splitter)
34
  texts = text_splitter.split_documents(documents)
35
- print('texts\n\n\n')
36
  print(texts)
37
  embeddings = OpenAIEmbeddings()
38
- print('embeddings\n\n\n')
39
  print(embeddings)
40
  db = Chroma.from_documents(texts, embeddings)
41
- print('db\n\n\n')
42
  print(db)
43
  retriever = db.as_retriever()
44
- print('retriever\n\n\n')
45
  print(retriever)
46
  global qa
47
  qa = ConversationalRetrievalChain.from_llm(
@@ -59,15 +54,11 @@ def add_text(history, text):
59
 
60
  def bot(history):
61
  response = infer(history[-1][0], history)
62
- print('bot response:')
63
- print(response)
64
  history[-1][1] = ""
65
 
66
  for character in response:
67
  history[-1][1] += character
68
- print("history")
69
  time.sleep(0.05)
70
- print(history)
71
  yield history
72
 
73
 
@@ -83,8 +74,6 @@ def infer(question, history):
83
  query = question
84
  result = qa({"question": query, "chat_history": chat_history})
85
  #print(result)
86
- print("infer result")
87
- print(result)
88
  return result["answer"]
89
 
90
  css="""
 
17
  from langchain.chains import ConversationalRetrievalChain
18
 
19
  def loading_pdf():
20
+ print("loading_pdf")
21
  return "Loading..."
22
 
23
  def pdf_changes(pdf_doc, open_ai_key):
24
+ print("pdf_change")
25
  if openai_key is not None:
26
  os.environ['OPENAI_API_KEY'] = open_ai_key
27
  loader = OnlinePDFLoader(pdf_doc.name)
 
28
  print(loader)
29
  documents = loader.load()
 
30
  print(documents)
31
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
 
32
  print(text_splitter)
33
  texts = text_splitter.split_documents(documents)
 
34
  print(texts)
35
  embeddings = OpenAIEmbeddings()
 
36
  print(embeddings)
37
  db = Chroma.from_documents(texts, embeddings)
 
38
  print(db)
39
  retriever = db.as_retriever()
 
40
  print(retriever)
41
  global qa
42
  qa = ConversationalRetrievalChain.from_llm(
 
54
 
55
  def bot(history):
56
  response = infer(history[-1][0], history)
 
 
57
  history[-1][1] = ""
58
 
59
  for character in response:
60
  history[-1][1] += character
 
61
  time.sleep(0.05)
 
62
  yield history
63
 
64
 
 
74
  query = question
75
  result = qa({"question": query, "chat_history": chat_history})
76
  #print(result)
 
 
77
  return result["answer"]
78
 
79
  css="""