Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,482 Bytes
796b62e 5a6b49d 796b62e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import plotly.express as px
import plotly.graph_objects as go
from utils import DEEPLITE_LIGHT_BLUE_HEX, load_yolobench_data
df, pareto_indices = load_yolobench_data()
METRIC_NAME_MAPPING = {
'[email protected]': 'mAP_0.5',
'[email protected]:0.95': 'mAP_0.5:0.95',
'Precision': 'precision',
'Recall': 'recall',
}
METRIC_KEYS_TO_NAMES = {v: k for k, v in METRIC_NAME_MAPPING.items()}
LATENCY_KEYS = {
'Raspberry Pi 4 Model B (CPU, TFLite, FP32)': 'raspi4_tflite_latency',
'Jetson Nano (GPU, ONNX Runtime, FP32)': 'nano_gpu_latency',
'Intel® Core™i7-10875H (CPU, OpenVINO, FP32)': 'openvino_latency',
'Khadas VIM3 (NPU, INT16)': 'vim3_latency',
'Orange Pi 5 (NPU, FP16)': 'orange_pi_latency',
'NVIDIA A40 (GPU, TensorRT, FP32)': 'a40_trt_latency',
}
LATENCY_KEYS_TO_NAMES = {v: k for k, v in LATENCY_KEYS.items()}
DATASET_TAGS = {
'PASCAL VOC': 'voc',
'SKU-110K': 'sku',
'WIDERFACE': 'wider',
'COCO': 'coco',
}
DATASET_TAGS_TO_NAMES = {v: k for k, v in DATASET_TAGS.items()}
def get_scatter_plot(
dataset_tag,
metric_tag,
latency_key,
model_family_coloring=True,
add_pareto_frontier=False,
plot_pareto_only=False,
log_axis=False,
):
fig_opts, layout_opts = {'opacity': 0.5, 'color_discrete_sequence': [DEEPLITE_LIGHT_BLUE_HEX]}, {}
if model_family_coloring:
fig_opts = {
'color': 'model_family',
'opacity': 0.75,
'color_discrete_sequence': px.colors.qualitative.Plotly,
}
layout_opts = {
'legend': dict(
title='Model family<br>(click to toggle)',
)
}
frontier = None
if plot_pareto_only:
metric_key = f'{metric_tag}_{dataset_tag}'
frontier = pareto_indices[metric_key][latency_key]
fig = px.scatter(
df if frontier is None else df.iloc[frontier, :],
x=latency_key,
y=f'{metric_tag}_{dataset_tag}',
title=f'{METRIC_KEYS_TO_NAMES[metric_tag]}-latency scatter plot',
hover_data={
'model_name': True,
'model_family': False,
latency_key: ':.2f',
f'{metric_tag}_{dataset_tag}': ':.2f',
},
labels={
'model_name': 'Model name',
latency_key: 'Latency',
f'{metric_tag}_{dataset_tag}': METRIC_KEYS_TO_NAMES[metric_tag],
},
template='plotly_white',
**fig_opts,
)
if log_axis:
fig.update_xaxes(type='log')
fig.update_layout(
height=600,
modebar_remove=['lasso', 'autoscale', 'zoomin', 'zoomout', 'select2d', 'select'],
xaxis_title=f'{LATENCY_KEYS_TO_NAMES[latency_key]} latency, ms',
yaxis_title=f"{METRIC_KEYS_TO_NAMES[metric_tag]}",
xaxis=dict(
rangeslider=dict(
visible=True,
bgcolor=DEEPLITE_LIGHT_BLUE_HEX,
thickness=0.02,
),
),
yaxis=dict(
fixedrange=False,
),
hoverlabel=dict(
# bgcolor="white",
font_size=14,
font_family='Source Sans Pro'
),
**layout_opts,
)
if add_pareto_frontier:
fig = pareto_frontier_layer(fig, dataset_tag, metric_tag, latency_key)
return fig
def create_yolobench_plots(
dataset_name,
hardware_name,
metric_name,
vis_options,
table_mode,
):
model_family_coloring = 'Model family' in vis_options
add_pareto_frontier = 'Highlight Pareto' in vis_options
plot_pareto_only = 'Show Pareto only' in vis_options
log_axis = 'Log x-axis' in vis_options
fig = get_scatter_plot(
DATASET_TAGS[dataset_name],
METRIC_NAME_MAPPING[metric_name],
LATENCY_KEYS[hardware_name],
model_family_coloring,
add_pareto_frontier,
plot_pareto_only,
log_axis,
)
pareto_table = get_pareto_table(
dataset_name, hardware_name, metric_name, expand_table='Show all' in table_mode
)
return fig, pareto_table
def pareto_frontier_layer(
fig,
dataset_tag,
metric_tag,
latency_key,
):
metric_key = f'{metric_tag}_{dataset_tag}'
frontier = pareto_indices[metric_key][latency_key]
fig.add_trace(
go.Scatter(
x=df.iloc[frontier, :][latency_key],
y=df.iloc[frontier, :][metric_key],
mode='lines',
opacity=0.5,
line=go.scatter.Line(color='grey'),
showlegend=False,
name=metric_key,
)
)
return fig
def get_pareto_table(
dataset_name, hardware_name, metric_name, expand_table=False,
):
dataset_tag = DATASET_TAGS[dataset_name]
metric_tag = METRIC_NAME_MAPPING[metric_name]
latency_key = LATENCY_KEYS[hardware_name]
metric_key = f'{metric_tag}_{dataset_tag}'
latency_key_final = f'{LATENCY_KEYS_TO_NAMES[latency_key]} latency, ms'
metric_key_final = METRIC_KEYS_TO_NAMES[metric_tag]
frontier = pareto_indices[metric_key][latency_key]
table_df = df.iloc[frontier, :][['model_name', metric_key, latency_key]]
table_df['Input resolution (px)'] = table_df['model_name'].apply(lambda name: name.split('_')[-1])
table_df['Model name'] = table_df['model_name'].apply(lambda name: name.split('_')[0])
table_df[metric_key_final] = table_df[metric_key].apply(lambda val: round(val, 3))
table_df[latency_key_final] = table_df[latency_key].apply(lambda val: round(val, 2))
def make_clickable(url, name):
return f'<a href="{url}">{name}</a>'
if dataset_name == 'COCO':
table_df['Download link'] = table_df['model_name'].apply(
lambda name: f'https://download.deeplite.ai/zoo/models/YOLOBench/{name.split("_")[0]}_640.pt'
)
table_df['Download link'] = table_df.apply(lambda x: make_clickable(x['Download link'], 'Weights download'), axis=1)
else:
table_df['Download link'] = table_df['model_name'].apply(lambda s: 'Coming soon')
table_df = table_df[['Model name', 'Input resolution (px)',
metric_key_final, latency_key_final, 'Download link']].sort_values(by=metric_key_final, ascending=False)
if not expand_table:
table_df = table_df.iloc[:10, :]
table_df = table_df.to_html(
classes='table',
escape=False, render_links=True, index=False
)
return table_df
|