Spaces:
Runtime error
Runtime error
Add dataset creation and model training code
Browse files- .gitignore +2 -0
- train/README.md +9 -0
- train/create_dataset.ipynb +284 -0
- train/requirements.txt +7 -0
- train/train.ipynb +474 -0
.gitignore
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
.vscode
|
| 2 |
.ipynb_checkpoints
|
| 3 |
.idea
|
|
|
|
|
|
|
|
|
| 1 |
.vscode
|
| 2 |
.ipynb_checkpoints
|
| 3 |
.idea
|
| 4 |
+
datasets
|
| 5 |
+
output_dir
|
train/README.md
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Train new model
|
| 2 |
+
|
| 3 |
+
- Download and extract the following datasets in a new folder called datasets:
|
| 4 |
+
|
| 5 |
+
1. [IMDb movies extensive dataset](https://www.kaggle.com/stefanoleone992/imdb-extensive-dataset)
|
| 6 |
+
2. [48K IMDB Movies With Posters](https://www.kaggle.com/rezaunderfit/48k-imdb-movies-with-posters)
|
| 7 |
+
|
| 8 |
+
- Run `create_dataset.ipynb` to create train.csv and valid.csv
|
| 9 |
+
- Run `train.ipynb` to train the model
|
train/create_dataset.ipynb
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "0fbed7bc",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"ExecuteTime": {
|
| 9 |
+
"end_time": "2021-12-09T16:46:29.851016Z",
|
| 10 |
+
"start_time": "2021-12-09T16:46:29.841794Z"
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"outputs": [],
|
| 14 |
+
"source": [
|
| 15 |
+
"%reload_ext autoreload\n",
|
| 16 |
+
"%autoreload 2"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
+
"id": "99d6f14d",
|
| 23 |
+
"metadata": {
|
| 24 |
+
"ExecuteTime": {
|
| 25 |
+
"end_time": "2021-12-09T16:46:30.336104Z",
|
| 26 |
+
"start_time": "2021-12-09T16:46:29.852308Z"
|
| 27 |
+
}
|
| 28 |
+
},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"from pathlib import Path\n",
|
| 32 |
+
"import pandas as pd\n",
|
| 33 |
+
"import shutil\n",
|
| 34 |
+
"from sklearn.model_selection import train_test_split"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"id": "c8fcf96c",
|
| 41 |
+
"metadata": {
|
| 42 |
+
"ExecuteTime": {
|
| 43 |
+
"end_time": "2021-12-09T16:46:30.349125Z",
|
| 44 |
+
"start_time": "2021-12-09T16:46:30.337223Z"
|
| 45 |
+
},
|
| 46 |
+
"code_folding": []
|
| 47 |
+
},
|
| 48 |
+
"outputs": [],
|
| 49 |
+
"source": [
|
| 50 |
+
"def copy_images(\n",
|
| 51 |
+
" src_dir: Path,\n",
|
| 52 |
+
" des_dir: Path,\n",
|
| 53 |
+
" ids_with_plots: list,\n",
|
| 54 |
+
" delete_existing_files: bool = False,\n",
|
| 55 |
+
"):\n",
|
| 56 |
+
" \"\"\"This function copies a poster to images folder if it's id is present in the ids_with_plots list\"\"\"\n",
|
| 57 |
+
"\n",
|
| 58 |
+
" images_list = []\n",
|
| 59 |
+
" if delete_existing_files:\n",
|
| 60 |
+
" shutil.rmtree(des_dir)\n",
|
| 61 |
+
"\n",
|
| 62 |
+
" des_dir.mkdir(parents=True, exist_ok=True)\n",
|
| 63 |
+
"\n",
|
| 64 |
+
" for f in src_dir.rglob(\"*\"):\n",
|
| 65 |
+
" try:\n",
|
| 66 |
+
" if f.is_file() and f.suffix in [\".jpg\", \".jpeg\", \".png\"]:\n",
|
| 67 |
+
" img_name = f.name\n",
|
| 68 |
+
" id = Path(img_name).stem\n",
|
| 69 |
+
" if id in ids_with_plots:\n",
|
| 70 |
+
" desc_file = des_dir / img_name\n",
|
| 71 |
+
" shutil.copy(f, desc_file)\n",
|
| 72 |
+
" images_list.append((id, img_name))\n",
|
| 73 |
+
" except Exception as e:\n",
|
| 74 |
+
" print(f, e)\n",
|
| 75 |
+
" return images_list"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": null,
|
| 81 |
+
"id": "a34124b2",
|
| 82 |
+
"metadata": {
|
| 83 |
+
"ExecuteTime": {
|
| 84 |
+
"end_time": "2021-12-09T16:46:30.359361Z",
|
| 85 |
+
"start_time": "2021-12-09T16:46:30.350299Z"
|
| 86 |
+
}
|
| 87 |
+
},
|
| 88 |
+
"outputs": [],
|
| 89 |
+
"source": [
|
| 90 |
+
"data_dir = Path(\"datasets\").resolve()\n",
|
| 91 |
+
"images_dir = data_dir / \"images\""
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"id": "8714ea01",
|
| 98 |
+
"metadata": {
|
| 99 |
+
"ExecuteTime": {
|
| 100 |
+
"end_time": "2021-12-09T16:46:30.781046Z",
|
| 101 |
+
"start_time": "2021-12-09T16:46:30.360608Z"
|
| 102 |
+
}
|
| 103 |
+
},
|
| 104 |
+
"outputs": [],
|
| 105 |
+
"source": [
|
| 106 |
+
"movies_df = pd.read_csv(\n",
|
| 107 |
+
" data_dir / \"IMDb movies.csv\", usecols=[\"imdb_title_id\", \"description\"]\n",
|
| 108 |
+
")\n",
|
| 109 |
+
"movies_df = movies_df.rename(columns={\"imdb_title_id\": \"id\", \"description\": \"text\"})\n",
|
| 110 |
+
"movies_df.dropna(subset=[\"text\"], inplace=True) # Drop rows where text is empty\n",
|
| 111 |
+
"movies_df.head()\n"
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"cell_type": "code",
|
| 116 |
+
"execution_count": null,
|
| 117 |
+
"id": "27f7fd94",
|
| 118 |
+
"metadata": {
|
| 119 |
+
"ExecuteTime": {
|
| 120 |
+
"end_time": "2021-12-09T16:46:30.792761Z",
|
| 121 |
+
"start_time": "2021-12-09T16:46:30.781964Z"
|
| 122 |
+
}
|
| 123 |
+
},
|
| 124 |
+
"outputs": [],
|
| 125 |
+
"source": [
|
| 126 |
+
"ids_with_plots = movies_df.id.tolist()"
|
| 127 |
+
]
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"cell_type": "code",
|
| 131 |
+
"execution_count": null,
|
| 132 |
+
"id": "ebaa042a",
|
| 133 |
+
"metadata": {
|
| 134 |
+
"ExecuteTime": {
|
| 135 |
+
"end_time": "2021-12-09T16:47:04.704390Z",
|
| 136 |
+
"start_time": "2021-12-09T16:46:30.794094Z"
|
| 137 |
+
}
|
| 138 |
+
},
|
| 139 |
+
"outputs": [],
|
| 140 |
+
"source": [
|
| 141 |
+
"images_list = copy_images(data_dir / \"Poster\", images_dir, ids_with_plots)\n",
|
| 142 |
+
"images_list[0]"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "code",
|
| 147 |
+
"execution_count": null,
|
| 148 |
+
"id": "17e0a874",
|
| 149 |
+
"metadata": {
|
| 150 |
+
"ExecuteTime": {
|
| 151 |
+
"end_time": "2021-12-09T16:47:04.724427Z",
|
| 152 |
+
"start_time": "2021-12-09T16:47:04.705540Z"
|
| 153 |
+
}
|
| 154 |
+
},
|
| 155 |
+
"outputs": [],
|
| 156 |
+
"source": [
|
| 157 |
+
"images_df = pd.DataFrame(images_list, columns=[\"id\", \"filename\"])\n",
|
| 158 |
+
"images_df.head()"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": null,
|
| 164 |
+
"id": "bb1114e6",
|
| 165 |
+
"metadata": {
|
| 166 |
+
"ExecuteTime": {
|
| 167 |
+
"end_time": "2021-12-09T16:47:04.772775Z",
|
| 168 |
+
"start_time": "2021-12-09T16:47:04.725707Z"
|
| 169 |
+
}
|
| 170 |
+
},
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"source": [
|
| 173 |
+
"data_df = pd.merge(movies_df, images_df, on=[\"id\"])\n",
|
| 174 |
+
"print(len(data_df))\n",
|
| 175 |
+
"data_df"
|
| 176 |
+
]
|
| 177 |
+
},
|
| 178 |
+
{
|
| 179 |
+
"cell_type": "code",
|
| 180 |
+
"execution_count": null,
|
| 181 |
+
"id": "6790815b",
|
| 182 |
+
"metadata": {
|
| 183 |
+
"ExecuteTime": {
|
| 184 |
+
"end_time": "2021-12-09T16:47:04.796785Z",
|
| 185 |
+
"start_time": "2021-12-09T16:47:04.774932Z"
|
| 186 |
+
}
|
| 187 |
+
},
|
| 188 |
+
"outputs": [],
|
| 189 |
+
"source": [
|
| 190 |
+
"print(len(data_df))\n",
|
| 191 |
+
"data_df.dropna(subset=[\"filename\"], inplace=True)\n",
|
| 192 |
+
"print(len(data_df))"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "code",
|
| 197 |
+
"execution_count": null,
|
| 198 |
+
"id": "40c7205d",
|
| 199 |
+
"metadata": {
|
| 200 |
+
"ExecuteTime": {
|
| 201 |
+
"end_time": "2021-12-09T16:47:04.818522Z",
|
| 202 |
+
"start_time": "2021-12-09T16:47:04.798063Z"
|
| 203 |
+
}
|
| 204 |
+
},
|
| 205 |
+
"outputs": [],
|
| 206 |
+
"source": [
|
| 207 |
+
"print(len(data_df))\n",
|
| 208 |
+
"data_df.dropna(subset=[\"text\"], inplace=True)\n",
|
| 209 |
+
"print(len(data_df))"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": null,
|
| 215 |
+
"id": "9a2d142f",
|
| 216 |
+
"metadata": {
|
| 217 |
+
"ExecuteTime": {
|
| 218 |
+
"end_time": "2021-12-09T16:47:04.838450Z",
|
| 219 |
+
"start_time": "2021-12-09T16:47:04.819726Z"
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"outputs": [],
|
| 223 |
+
"source": [
|
| 224 |
+
"print(len(data_df))\n",
|
| 225 |
+
"data_df.drop_duplicates(subset=[\"id\"], inplace=True)\n",
|
| 226 |
+
"print(len(data_df))"
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": null,
|
| 232 |
+
"id": "45f4b970",
|
| 233 |
+
"metadata": {
|
| 234 |
+
"ExecuteTime": {
|
| 235 |
+
"end_time": "2021-12-09T16:47:04.971652Z",
|
| 236 |
+
"start_time": "2021-12-09T16:47:04.839618Z"
|
| 237 |
+
}
|
| 238 |
+
},
|
| 239 |
+
"outputs": [],
|
| 240 |
+
"source": [
|
| 241 |
+
"data_df.to_csv(data_dir / \"data.csv\", index=False)"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": null,
|
| 247 |
+
"id": "f8019a02",
|
| 248 |
+
"metadata": {
|
| 249 |
+
"ExecuteTime": {
|
| 250 |
+
"end_time": "2021-12-09T16:47:05.104710Z",
|
| 251 |
+
"start_time": "2021-12-09T16:47:04.972681Z"
|
| 252 |
+
}
|
| 253 |
+
},
|
| 254 |
+
"outputs": [],
|
| 255 |
+
"source": [
|
| 256 |
+
"train_df, valid_df = train_test_split(data_df, test_size=0.1, shuffle=True)\n",
|
| 257 |
+
"train_df.to_csv(data_dir / \"train.csv\", index=False)\n",
|
| 258 |
+
"valid_df.to_csv(data_dir / \"valid.csv\", index=False)\n",
|
| 259 |
+
"print(len(train_df), len(valid_df))"
|
| 260 |
+
]
|
| 261 |
+
}
|
| 262 |
+
],
|
| 263 |
+
"metadata": {
|
| 264 |
+
"kernelspec": {
|
| 265 |
+
"display_name": "huggingface",
|
| 266 |
+
"language": "python",
|
| 267 |
+
"name": "huggingface"
|
| 268 |
+
},
|
| 269 |
+
"language_info": {
|
| 270 |
+
"codemirror_mode": {
|
| 271 |
+
"name": "ipython",
|
| 272 |
+
"version": 3
|
| 273 |
+
},
|
| 274 |
+
"file_extension": ".py",
|
| 275 |
+
"mimetype": "text/x-python",
|
| 276 |
+
"name": "python",
|
| 277 |
+
"nbconvert_exporter": "python",
|
| 278 |
+
"pygments_lexer": "ipython3",
|
| 279 |
+
"version": "3.9.7"
|
| 280 |
+
}
|
| 281 |
+
},
|
| 282 |
+
"nbformat": 4,
|
| 283 |
+
"nbformat_minor": 5
|
| 284 |
+
}
|
train/requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--find-links https://download.pytorch.org/whl/torch_stable.html
|
| 2 |
+
pandas==1.3.4
|
| 3 |
+
scikit-learn==1.0.1
|
| 4 |
+
python-box==5.4.1
|
| 5 |
+
transformers==4.12.5
|
| 6 |
+
torch==1.10.0+cu113
|
| 7 |
+
Pillow==8.4.0
|
train/train.ipynb
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "0fbed7bc",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"ExecuteTime": {
|
| 9 |
+
"end_time": "2021-12-09T15:34:14.921553Z",
|
| 10 |
+
"start_time": "2021-12-09T15:34:14.911112Z"
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"outputs": [],
|
| 14 |
+
"source": [
|
| 15 |
+
"%reload_ext autoreload\n",
|
| 16 |
+
"%autoreload 2"
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": null,
|
| 22 |
+
"id": "c4b60ef3",
|
| 23 |
+
"metadata": {
|
| 24 |
+
"ExecuteTime": {
|
| 25 |
+
"end_time": "2021-12-09T15:34:15.961098Z",
|
| 26 |
+
"start_time": "2021-12-09T15:34:14.922771Z"
|
| 27 |
+
},
|
| 28 |
+
"code_folding": []
|
| 29 |
+
},
|
| 30 |
+
"outputs": [],
|
| 31 |
+
"source": [
|
| 32 |
+
"# imports\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"import pandas as pd\n",
|
| 35 |
+
"import os\n",
|
| 36 |
+
"from pathlib import Path\n",
|
| 37 |
+
"from PIL import Image\n",
|
| 38 |
+
"import shutil\n",
|
| 39 |
+
"from logging import root\n",
|
| 40 |
+
"from PIL import Image\n",
|
| 41 |
+
"from pathlib import Path\n",
|
| 42 |
+
"import pandas as pd\n",
|
| 43 |
+
"import torch\n",
|
| 44 |
+
"from torch.utils.data import Dataset\n",
|
| 45 |
+
"from PIL import Image\n",
|
| 46 |
+
"from transformers import (\n",
|
| 47 |
+
" Seq2SeqTrainer,\n",
|
| 48 |
+
" Seq2SeqTrainingArguments,\n",
|
| 49 |
+
" get_linear_schedule_with_warmup,\n",
|
| 50 |
+
" AutoFeatureExtractor,\n",
|
| 51 |
+
" AutoTokenizer,\n",
|
| 52 |
+
" ViTFeatureExtractor,\n",
|
| 53 |
+
" VisionEncoderDecoderModel,\n",
|
| 54 |
+
" default_data_collator,\n",
|
| 55 |
+
")\n",
|
| 56 |
+
"from transformers.optimization import AdamW\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"from box import Box\n",
|
| 59 |
+
"import inspect\n"
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "code",
|
| 64 |
+
"execution_count": null,
|
| 65 |
+
"id": "99d6f14d",
|
| 66 |
+
"metadata": {
|
| 67 |
+
"ExecuteTime": {
|
| 68 |
+
"end_time": "2021-12-09T15:34:15.979191Z",
|
| 69 |
+
"start_time": "2021-12-09T15:34:15.962078Z"
|
| 70 |
+
},
|
| 71 |
+
"code_folding": []
|
| 72 |
+
},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"# custom functions\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"class ImageCaptionDataset(Dataset):\n",
|
| 78 |
+
" def __init__(\n",
|
| 79 |
+
" self, df, feature_extractor, tokenizer, images_dir, max_target_length=128\n",
|
| 80 |
+
" ):\n",
|
| 81 |
+
" self.df = df\n",
|
| 82 |
+
" self.feature_extractor = feature_extractor\n",
|
| 83 |
+
" self.tokenizer = tokenizer\n",
|
| 84 |
+
" self.images_dir = images_dir\n",
|
| 85 |
+
" self.max_target_length = max_target_length\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" def __len__(self):\n",
|
| 88 |
+
" return len(self.df)\n",
|
| 89 |
+
"\n",
|
| 90 |
+
" def __getitem__(self, idx):\n",
|
| 91 |
+
" filename = self.df[\"filename\"][idx]\n",
|
| 92 |
+
" text = self.df[\"text\"][idx]\n",
|
| 93 |
+
" # prepare image (i.e. resize + normalize)\n",
|
| 94 |
+
" image = Image.open(self.images_dir / filename).convert(\"RGB\")\n",
|
| 95 |
+
" pixel_values = self.feature_extractor(image, return_tensors=\"pt\").pixel_values\n",
|
| 96 |
+
" # add labels (input_ids) by encoding the text\n",
|
| 97 |
+
" labels = self.tokenizer(\n",
|
| 98 |
+
" text,\n",
|
| 99 |
+
" padding=\"max_length\",\n",
|
| 100 |
+
" truncation=True,\n",
|
| 101 |
+
" max_length=self.max_target_length,\n",
|
| 102 |
+
" ).input_ids\n",
|
| 103 |
+
" # important: make sure that PAD tokens are ignored by the loss function\n",
|
| 104 |
+
" labels = [\n",
|
| 105 |
+
" label if label != self.tokenizer.pad_token_id else -100 for label in labels\n",
|
| 106 |
+
" ]\n",
|
| 107 |
+
"\n",
|
| 108 |
+
" encoding = {\n",
|
| 109 |
+
" \"pixel_values\": pixel_values.squeeze(),\n",
|
| 110 |
+
" \"labels\": torch.tensor(labels),\n",
|
| 111 |
+
" }\n",
|
| 112 |
+
" return encoding\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"def predict(image, max_length=64, num_beams=4):\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" pixel_values = feature_extractor(images=image, return_tensors=\"pt\").pixel_values\n",
|
| 119 |
+
" pixel_values = pixel_values.to(device)\n",
|
| 120 |
+
"\n",
|
| 121 |
+
" with torch.no_grad():\n",
|
| 122 |
+
" output_ids = model.generate(\n",
|
| 123 |
+
" pixel_values,\n",
|
| 124 |
+
" max_length=max_length,\n",
|
| 125 |
+
" num_beams=num_beams,\n",
|
| 126 |
+
" return_dict_in_generate=True,\n",
|
| 127 |
+
" ).sequences\n",
|
| 128 |
+
"\n",
|
| 129 |
+
" preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)\n",
|
| 130 |
+
" preds = [pred.strip() for pred in preds]\n",
|
| 131 |
+
"\n",
|
| 132 |
+
" return preds\n"
|
| 133 |
+
]
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"cell_type": "code",
|
| 137 |
+
"execution_count": null,
|
| 138 |
+
"id": "ea66826b",
|
| 139 |
+
"metadata": {
|
| 140 |
+
"ExecuteTime": {
|
| 141 |
+
"end_time": "2021-12-09T15:34:16.042990Z",
|
| 142 |
+
"start_time": "2021-12-09T15:34:15.980557Z"
|
| 143 |
+
}
|
| 144 |
+
},
|
| 145 |
+
"outputs": [],
|
| 146 |
+
"source": [
|
| 147 |
+
"data_dir = Path(\"datasets\").resolve()\n",
|
| 148 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 149 |
+
"print(device)"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": null,
|
| 155 |
+
"id": "17cfb2c2",
|
| 156 |
+
"metadata": {
|
| 157 |
+
"ExecuteTime": {
|
| 158 |
+
"end_time": "2021-12-09T15:34:16.058421Z",
|
| 159 |
+
"start_time": "2021-12-09T15:34:16.044111Z"
|
| 160 |
+
}
|
| 161 |
+
},
|
| 162 |
+
"outputs": [],
|
| 163 |
+
"source": [
|
| 164 |
+
"# arguments pertaining to what data we are going to input our model for training and eval.\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"data_training_args = {\n",
|
| 167 |
+
" # The maximum total sequence length for target text after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded.\n",
|
| 168 |
+
" \"max_target_length\": 64,\n",
|
| 169 |
+
"\n",
|
| 170 |
+
" # Number of beams to use for evaluation. This argument will be passed to model.generate which is used during evaluate and predict.\n",
|
| 171 |
+
" \"num_beams\": 4,\n",
|
| 172 |
+
"\n",
|
| 173 |
+
" # Folder with all the images\n",
|
| 174 |
+
" \"images_dir\": data_dir / \"images\",\n",
|
| 175 |
+
"}\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"data_training_args = Box(data_training_args)"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": null,
|
| 183 |
+
"id": "adc4839a",
|
| 184 |
+
"metadata": {
|
| 185 |
+
"ExecuteTime": {
|
| 186 |
+
"end_time": "2021-12-09T15:34:16.073242Z",
|
| 187 |
+
"start_time": "2021-12-09T15:34:16.059354Z"
|
| 188 |
+
}
|
| 189 |
+
},
|
| 190 |
+
"outputs": [],
|
| 191 |
+
"source": [
|
| 192 |
+
"# arguments pertaining to which model/config/tokenizer we are going to fine-tune from.\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"model_args = {\n",
|
| 195 |
+
"\n",
|
| 196 |
+
" # Path to pretrained model or model identifier from huggingface.co/models\"\n",
|
| 197 |
+
" \"encoder_model_name_or_path\": \"google/vit-base-patch16-224-in21k\",\n",
|
| 198 |
+
"\n",
|
| 199 |
+
" # Path to pretrained model or model identifier from huggingface.co/models\"\n",
|
| 200 |
+
" \"decoder_model_name_or_path\": \"gpt2\",\n",
|
| 201 |
+
"\n",
|
| 202 |
+
" # If set to int > 0, all ngrams of that size can only occur once.\n",
|
| 203 |
+
" \"no_repeat_ngram_size\": 3,\n",
|
| 204 |
+
"\n",
|
| 205 |
+
" # Exponential penalty to the length that will be used by default in the generate method of the model.\n",
|
| 206 |
+
" \"length_penalty\": 2.0,\n",
|
| 207 |
+
"}\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"model_args = Box(model_args)"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": null,
|
| 215 |
+
"id": "22b8c9e3",
|
| 216 |
+
"metadata": {
|
| 217 |
+
"ExecuteTime": {
|
| 218 |
+
"end_time": "2021-12-09T15:34:16.089201Z",
|
| 219 |
+
"start_time": "2021-12-09T15:34:16.074223Z"
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"outputs": [],
|
| 223 |
+
"source": [
|
| 224 |
+
"# arguments pertaining to Trainer class. Refer: https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"training_args = {\n",
|
| 227 |
+
" \"num_train_epochs\": 5,\n",
|
| 228 |
+
" \"per_device_train_batch_size\": 32,\n",
|
| 229 |
+
" \"per_device_eval_batch_size\": 32,\n",
|
| 230 |
+
" \"output_dir\": \"output_dir\",\n",
|
| 231 |
+
" \"do_train\": True,\n",
|
| 232 |
+
" \"do_eval\": True,\n",
|
| 233 |
+
" \"fp16\": True,\n",
|
| 234 |
+
" \"learning_rate\": 1e-5,\n",
|
| 235 |
+
" \"load_best_model_at_end\": True,\n",
|
| 236 |
+
" \"evaluation_strategy\": \"epoch\",\n",
|
| 237 |
+
" \"save_strategy\": \"epoch\",\n",
|
| 238 |
+
" \"report_to\": \"none\"\n",
|
| 239 |
+
"}\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"seq2seq_training_args = Seq2SeqTrainingArguments(**training_args)"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"cell_type": "code",
|
| 246 |
+
"execution_count": null,
|
| 247 |
+
"id": "d0023eac",
|
| 248 |
+
"metadata": {
|
| 249 |
+
"ExecuteTime": {
|
| 250 |
+
"end_time": "2021-12-09T15:34:37.844396Z",
|
| 251 |
+
"start_time": "2021-12-09T15:34:16.090085Z"
|
| 252 |
+
}
|
| 253 |
+
},
|
| 254 |
+
"outputs": [],
|
| 255 |
+
"source": [
|
| 256 |
+
"feature_extractor = ViTFeatureExtractor.from_pretrained(\n",
|
| 257 |
+
" model_args.encoder_model_name_or_path\n",
|
| 258 |
+
")\n",
|
| 259 |
+
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
| 260 |
+
" model_args.decoder_model_name_or_path, use_fast=True\n",
|
| 261 |
+
")\n",
|
| 262 |
+
"tokenizer.pad_token = tokenizer.eos_token\n",
|
| 263 |
+
"\n",
|
| 264 |
+
"model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
| 265 |
+
" model_args.encoder_model_name_or_path, model_args.decoder_model_name_or_path\n",
|
| 266 |
+
")\n",
|
| 267 |
+
"\n",
|
| 268 |
+
"# set special tokens used for creating the decoder_input_ids from the labels\n",
|
| 269 |
+
"model.config.decoder_start_token_id = tokenizer.bos_token_id\n",
|
| 270 |
+
"model.config.pad_token_id = tokenizer.pad_token_id\n",
|
| 271 |
+
"# make sure vocab size is set correctly\n",
|
| 272 |
+
"model.config.vocab_size = model.config.decoder.vocab_size\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"# set beam search parameters\n",
|
| 275 |
+
"model.config.eos_token_id = tokenizer.sep_token_id\n",
|
| 276 |
+
"model.config.max_length = data_training_args.max_target_length\n",
|
| 277 |
+
"model.config.no_repeat_ngram_size = model_args.no_repeat_ngram_size\n",
|
| 278 |
+
"model.config.length_penalty = model_args.length_penalty\n",
|
| 279 |
+
"model.config.num_beams = data_training_args.num_beams\n",
|
| 280 |
+
"model.decoder.resize_token_embeddings(len(tokenizer))\n"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"cell_type": "code",
|
| 285 |
+
"execution_count": null,
|
| 286 |
+
"id": "6428ea08",
|
| 287 |
+
"metadata": {
|
| 288 |
+
"ExecuteTime": {
|
| 289 |
+
"end_time": "2021-12-09T15:34:37.933804Z",
|
| 290 |
+
"start_time": "2021-12-09T15:34:37.845607Z"
|
| 291 |
+
}
|
| 292 |
+
},
|
| 293 |
+
"outputs": [],
|
| 294 |
+
"source": [
|
| 295 |
+
"train_df = pd.read_csv(data_dir / \"train.csv\")\n",
|
| 296 |
+
"valid_df = pd.read_csv(data_dir / \"valid.csv\")\n",
|
| 297 |
+
"\n",
|
| 298 |
+
"train_dataset = ImageCaptionDataset(\n",
|
| 299 |
+
" df=train_df,\n",
|
| 300 |
+
" feature_extractor=feature_extractor,\n",
|
| 301 |
+
" tokenizer=tokenizer,\n",
|
| 302 |
+
" images_dir=data_training_args.images_dir,\n",
|
| 303 |
+
" max_target_length=data_training_args.max_target_length,\n",
|
| 304 |
+
")\n",
|
| 305 |
+
"eval_dataset = ImageCaptionDataset(\n",
|
| 306 |
+
" df=valid_df,\n",
|
| 307 |
+
" feature_extractor=feature_extractor,\n",
|
| 308 |
+
" tokenizer=tokenizer,\n",
|
| 309 |
+
" images_dir=data_training_args.images_dir,\n",
|
| 310 |
+
" max_target_length=data_training_args.max_target_length,\n",
|
| 311 |
+
")\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"print(f\"Number of training examples: {len(train_dataset)}\")\n",
|
| 314 |
+
"print(f\"Number of validation examples: {len(eval_dataset)}\")"
|
| 315 |
+
]
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"cell_type": "code",
|
| 319 |
+
"execution_count": null,
|
| 320 |
+
"id": "c8e492a1",
|
| 321 |
+
"metadata": {
|
| 322 |
+
"ExecuteTime": {
|
| 323 |
+
"end_time": "2021-12-09T15:34:37.971630Z",
|
| 324 |
+
"start_time": "2021-12-09T15:34:37.935339Z"
|
| 325 |
+
}
|
| 326 |
+
},
|
| 327 |
+
"outputs": [],
|
| 328 |
+
"source": [
|
| 329 |
+
"# Let's verify an example from the training dataset:\n",
|
| 330 |
+
"\n",
|
| 331 |
+
"encoding = train_dataset[0]\n",
|
| 332 |
+
"for k,v in encoding.items():\n",
|
| 333 |
+
" print(k, v.shape)"
|
| 334 |
+
]
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"cell_type": "code",
|
| 338 |
+
"execution_count": null,
|
| 339 |
+
"id": "edb4e7a6",
|
| 340 |
+
"metadata": {
|
| 341 |
+
"ExecuteTime": {
|
| 342 |
+
"end_time": "2021-12-09T15:34:38.006980Z",
|
| 343 |
+
"start_time": "2021-12-09T15:34:37.972483Z"
|
| 344 |
+
}
|
| 345 |
+
},
|
| 346 |
+
"outputs": [],
|
| 347 |
+
"source": [
|
| 348 |
+
"# We can also check the original image and decode the labels:\n",
|
| 349 |
+
"image = Image.open(data_training_args.images_dir / train_df[\"filename\"][0]).convert(\"RGB\")\n",
|
| 350 |
+
"image"
|
| 351 |
+
]
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"cell_type": "code",
|
| 355 |
+
"execution_count": null,
|
| 356 |
+
"id": "25f2cae7",
|
| 357 |
+
"metadata": {
|
| 358 |
+
"ExecuteTime": {
|
| 359 |
+
"end_time": "2021-12-09T15:34:38.031745Z",
|
| 360 |
+
"start_time": "2021-12-09T15:34:38.008027Z"
|
| 361 |
+
}
|
| 362 |
+
},
|
| 363 |
+
"outputs": [],
|
| 364 |
+
"source": [
|
| 365 |
+
"labels = encoding[\"labels\"]\n",
|
| 366 |
+
"labels[labels == -100] = tokenizer.pad_token_id\n",
|
| 367 |
+
"label_str = tokenizer.decode(labels, skip_special_tokens=True)\n",
|
| 368 |
+
"print(label_str)\n"
|
| 369 |
+
]
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"cell_type": "code",
|
| 373 |
+
"execution_count": null,
|
| 374 |
+
"id": "b7a009d3",
|
| 375 |
+
"metadata": {
|
| 376 |
+
"ExecuteTime": {
|
| 377 |
+
"end_time": "2021-12-09T15:34:38.049539Z",
|
| 378 |
+
"start_time": "2021-12-09T15:34:38.032749Z"
|
| 379 |
+
}
|
| 380 |
+
},
|
| 381 |
+
"outputs": [],
|
| 382 |
+
"source": [
|
| 383 |
+
"optimizer = AdamW(model.parameters(), lr=seq2seq_training_args.learning_rate)\n",
|
| 384 |
+
"\n",
|
| 385 |
+
"steps_per_epoch = len(train_dataset) // seq2seq_training_args.per_device_train_batch_size\n",
|
| 386 |
+
"num_training_steps = steps_per_epoch * seq2seq_training_args.num_train_epochs\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
| 389 |
+
" optimizer,\n",
|
| 390 |
+
" num_warmup_steps=seq2seq_training_args.warmup_steps,\n",
|
| 391 |
+
" num_training_steps=num_training_steps,\n",
|
| 392 |
+
")\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"optimizers = (optimizer, lr_scheduler)"
|
| 395 |
+
]
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"cell_type": "code",
|
| 399 |
+
"execution_count": null,
|
| 400 |
+
"id": "f2f477b2",
|
| 401 |
+
"metadata": {
|
| 402 |
+
"ExecuteTime": {
|
| 403 |
+
"start_time": "2021-12-09T15:34:14.944Z"
|
| 404 |
+
}
|
| 405 |
+
},
|
| 406 |
+
"outputs": [],
|
| 407 |
+
"source": [
|
| 408 |
+
"trainer = Seq2SeqTrainer(\n",
|
| 409 |
+
" model=model,\n",
|
| 410 |
+
" optimizers=optimizers,\n",
|
| 411 |
+
" tokenizer=feature_extractor,\n",
|
| 412 |
+
" args=seq2seq_training_args,\n",
|
| 413 |
+
" train_dataset=train_dataset,\n",
|
| 414 |
+
" eval_dataset=eval_dataset,\n",
|
| 415 |
+
" data_collator=default_data_collator,\n",
|
| 416 |
+
")\n",
|
| 417 |
+
"\n",
|
| 418 |
+
"trainer.train()"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"cell_type": "code",
|
| 423 |
+
"execution_count": null,
|
| 424 |
+
"id": "f08d2b7c",
|
| 425 |
+
"metadata": {
|
| 426 |
+
"ExecuteTime": {
|
| 427 |
+
"end_time": "2021-12-09T16:24:49.096274Z",
|
| 428 |
+
"start_time": "2021-12-09T16:24:49.096246Z"
|
| 429 |
+
}
|
| 430 |
+
},
|
| 431 |
+
"outputs": [],
|
| 432 |
+
"source": [
|
| 433 |
+
"test_img = \"../examples/tt7991608-red-notice.jpg\"\n",
|
| 434 |
+
"with Image.open(test_img) as image:\n",
|
| 435 |
+
" preds = predict(\n",
|
| 436 |
+
" image, max_length=data_training_args.max_target_length, num_beams=data_training_args.num_beams\n",
|
| 437 |
+
" )\n",
|
| 438 |
+
"\n",
|
| 439 |
+
"# Uncomment to display the test image in a jupyter notebook\n",
|
| 440 |
+
"# display(image)\n",
|
| 441 |
+
"print(preds[0])"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"cell_type": "code",
|
| 446 |
+
"execution_count": null,
|
| 447 |
+
"id": "ecf21225",
|
| 448 |
+
"metadata": {},
|
| 449 |
+
"outputs": [],
|
| 450 |
+
"source": []
|
| 451 |
+
}
|
| 452 |
+
],
|
| 453 |
+
"metadata": {
|
| 454 |
+
"kernelspec": {
|
| 455 |
+
"display_name": "huggingface",
|
| 456 |
+
"language": "python",
|
| 457 |
+
"name": "huggingface"
|
| 458 |
+
},
|
| 459 |
+
"language_info": {
|
| 460 |
+
"codemirror_mode": {
|
| 461 |
+
"name": "ipython",
|
| 462 |
+
"version": 3
|
| 463 |
+
},
|
| 464 |
+
"file_extension": ".py",
|
| 465 |
+
"mimetype": "text/x-python",
|
| 466 |
+
"name": "python",
|
| 467 |
+
"nbconvert_exporter": "python",
|
| 468 |
+
"pygments_lexer": "ipython3",
|
| 469 |
+
"version": "3.9.7"
|
| 470 |
+
}
|
| 471 |
+
},
|
| 472 |
+
"nbformat": 4,
|
| 473 |
+
"nbformat_minor": 5
|
| 474 |
+
}
|