Spaces:
Running
Running
import os.path | |
import re | |
from typing import List, Tuple | |
from hfutils.operate import get_hf_fs | |
from hfutils.utils import hf_fs_path, parse_hf_fs_path | |
from imgutils.data import ImageTyping | |
from imgutils.detect import detect_heads | |
from .base import ObjectDetection | |
def _parse_model_name(model_name: str): | |
matching = re.fullmatch(r'^head_detect_best_(?P<level>[\s\S]+?)$', model_name) | |
return matching.group('level') | |
class HeadDetection(ObjectDetection): | |
def __init__(self): | |
self.repo_id = 'deepghs/imgutils-models' | |
def _get_default_model(self) -> str: | |
return 'head_detect_best_s' | |
def _list_models(self) -> List[str]: | |
hf_fs = get_hf_fs() | |
return [ | |
os.path.splitext(os.path.basename(parse_hf_fs_path(path).filename))[0] | |
for path in hf_fs.glob(hf_fs_path( | |
repo_id=self.repo_id, | |
repo_type='model', | |
filename='head_detect/*.onnx', | |
)) | |
] | |
def _get_default_iou_and_score(self, model_name: str) -> Tuple[float, float]: | |
return 0.7, 0.3 | |
def _get_labels(self, model_name: str) -> List[str]: | |
return ['head'] | |
def detect(self, image: ImageTyping, model_name: str, | |
iou_threshold: float = 0.7, score_threshold: float = 0.25) -> \ | |
List[Tuple[Tuple[float, float, float, float], str, float]]: | |
level = _parse_model_name(model_name) | |
return detect_heads(image=image, level=level, | |
iou_threshold=iou_threshold, conf_threshold=score_threshold) | |