Spaces:
Runtime error
Runtime error
try: | |
from ..llm import get_client | |
except ImportError: | |
from llm import get_client | |
import os | |
from pydub import AudioSegment | |
def split_audio(file_path, max_size=20 * 1024 * 1024): | |
"""Split an audio file into smaller parts if it exceeds a maximum size. | |
Args: | |
file_path (str): The path to the audio file to be split. | |
max_size (int): The maximum size in bytes for each split part. Defaults to 20 MB. | |
Returns: | |
list: A list of tuples containing the split audio segments and their respective file paths. | |
""" | |
audio = AudioSegment.from_wav(file_path) | |
file_size = os.path.getsize(file_path) | |
if file_size <= max_size: | |
return [(audio, file_path)] | |
# Calculate the number of parts needed | |
num_parts = file_size // max_size + 1 | |
part_length = len(audio) // num_parts | |
parts = [] | |
for i in range(num_parts): | |
start = i * part_length | |
end = (i + 1) * part_length if (i + 1) < num_parts else len(audio) | |
part = audio[start:end] | |
part_path = f"{file_path[:-4]}_part_{i+1}.wav" | |
part.export(part_path, format="wav") | |
parts.append((part, part_path)) | |
return parts | |
def speech_to_text(location): | |
"""Convert speech audio file to text using an external service. | |
Args: | |
location (str): The path to the speech audio file. | |
Returns: | |
str: The transcribed text from the speech audio file. | |
""" | |
audio_parts = split_audio(location) | |
transcriptions = [] | |
for part, part_path in audio_parts: | |
with open(part_path, "rb") as audio_file: | |
transcription = get_client().audio.transcriptions.create( | |
model="whisper-1", file=audio_file | |
) | |
transcriptions.append(transcription) | |
os.remove(part_path) # Clean up the temporary file immediately after processing | |
# Merge transcriptions (assuming it's a list of text segments) | |
full_transcription = " ".join( | |
transcription.text for transcription in transcriptions | |
) | |
return full_transcription | |