File size: 4,851 Bytes
9b674e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
try:
    from ..gui.signal import *
    from ..utils.db import *
    from ..utils.telemetry import my_tracer, os_name
except ImportError:
    from gui.signal import *
    from utils.db import *
    from utils.telemetry import my_tracer, os_name
import numpy as np
import sounddevice as sd
import soundfile as sf
import scipy.io.wavfile as wavfile
import soundcard as sc
import threading
import time

samplerate = 48000  # Updated samplerate for better quality
channels = 1
recording = False

audio_data = None

user_id = load_user_id()
os_name_ = os_name()

the_input_box_pre = ""



import queue

# Initialize a queue to keep the last N audio levels (rolling window)
audio_levels = queue.Queue(maxsize=10)  # Adjust size as needed

def calculate_dynamic_threshold():
    """Calculate a dynamic threshold based on recent audio levels."""
    if audio_levels.qsize() == 0:
        return 0.01  # Default threshold if no data is available
    else:
        # Calculate the average of the last N audio levels
        return np.mean(list(audio_levels.queue)) * 2  # Adjust multiplier as needed


silence_start_time = None

auto_stop_recording = True


def start_recording(take_system_audio, buttonhandler):
    """Start recording audio from microphone and/or system sound.


    """
    with my_tracer.start_span("start_recording") as span:
        span.set_attribute("user_id", user_id)
        span.set_attribute("os_name", os_name_)

        global the_input_box_pre
        from ..gpt_computer_assistant import the_input_box, the_main_window
        the_input_box_pre = the_input_box.toPlainText()

        the_main_window.update_from_thread("Click again when recording is done")
        global recording, audio_data, silence_start_time, auto_stop_recording
        recording = True
        audio_data = np.array([], dtype="float32")
        print("Recording started...")

        threshold = 0.01  # Define the threshold for stopping the recording
        silence_duration = 2  # Duration in seconds to consider as silence before stopping
        silence_start_time = None
        recording_start_time = time.time()  # Record the start time of the recording

        auto_stop_recording = is_auto_stop_recording_setting_active()


        def callback(indata, frames, time_info, status):
            global audio_data, recording, silence_start_time, auto_stop_recording
            current_level = np.max(np.abs(indata))


            # Add the current level to the queue
            if audio_levels.full():
                audio_levels.get()  # Remove the oldest level if the queue is full
            audio_levels.put(current_level)

            # Calculate dynamic threshold based on recent audio levels
            dynamic_threshold = calculate_dynamic_threshold()


            if recording:
                audio_data = np.append(audio_data, indata)
                # Check if the audio is below the dynamic threshold
                if current_level < dynamic_threshold and auto_stop_recording:
                    if silence_start_time is None:
                        silence_start_time = time.time()  # Mark the start of silence

                    # Ensure recording has been ongoing for at least 3 seconds before considering auto-stop
                    elif (time.time() - silence_start_time) > silence_duration and (time.time() - recording_start_time) > 3:
                        recording = False
                        buttonhandler.recording = False

                else:
                    silence_start_time = None


    def record_audio():
        with my_tracer.start_span("record_audio") as span:
            span.set_attribute("user_id", user_id)
            span.set_attribute("os_name", os_name_)
            global recording
            mics = sc.all_microphones(include_loopback=True)
            default_mic = mics[0]
            data = []
            with default_mic.recorder(samplerate=148000) as mic:
                print("Recording...")
                while recording:
                    frame = mic.record(numframes=4096)
                    data.append(frame)
            data = np.concatenate(data, axis=0)
            data_int16 = (data * 32767).astype("int16")
            wavfile.write(system_sound_location, 148000, data_int16)

    if take_system_audio:
        recording_thread = threading.Thread(target=record_audio)
        recording_thread.start()

    with sd.InputStream(callback=callback, channels=channels, samplerate=samplerate):
        while recording:
            sd.sleep(100)

    if not recording:
        sf.write(mic_record_location, audio_data, samplerate)
        print("Audio saved as voice_input.wav")
        signal_handler.recording_stopped.emit()

def stop_recording():
    """Stop recording audio."""
    global recording
    recording = False
    print("Recording stopped")