deepali1021 commited on
Commit
42d68f2
Β·
1 Parent(s): 26dc68b

Added readme

Browse files
Files changed (1) hide show
  1. README.md +58 -5
README.md CHANGED
@@ -1,10 +1,63 @@
1
  ---
2
- title: AIE5 Demo
3
- emoji: πŸ“ˆ
4
- colorFrom: green
5
- colorTo: gray
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Paul Graham Essay Bot
3
+ emoji: 🐠
4
+ colorFrom: pink
5
+ colorTo: pink
6
  sdk: docker
7
  pinned: false
8
  ---
9
 
10
+ # πŸ” Open Source RAG with Hugging Face Enpoints
11
+
12
+ ![Open Source](https://img.shields.io/badge/Open%20Source-Models-brightgreen)
13
+ ![LangChain](https://img.shields.io/badge/Built%20with-LangChain-blue)
14
+ ![Chainlit](https://img.shields.io/badge/UI-Chainlit-orange)
15
+ ![HuggingFace](https://img.shields.io/badge/Deployed%20on-HuggingFace-yellow)
16
+
17
+ ## πŸ“ About
18
+
19
+ Welcome to this **Paul Graham Essay Bot** - a friendly AI-powered system that demonstrates the power of Retrieval Augmented Generation using completely open source models! This application leverages modern AI technology to provide intelligent answers to your questions based on a collection of essays by Paul Graham, covering topics such as programming languages, startup culture, spam filtering, design principles, and the philosophy of hacking and innovation.
20
+
21
+ ## ✨ Features
22
+
23
+ - **Open Source Models**: Powered by NousResearch/Meta-Llama-3.1-8B-Instruct for text generation and Snowflake/snowflake-arctic-embed-m for embeddings
24
+ - **HuggingFace Integration**: Models deployed as serving endpoints on HuggingFace
25
+ - **Intelligent Retrieval**: Utilizes RAG (Retrieval Augmented Generation) for accurate and contextual responses
26
+ - **Fast & Responsive**: Async processing for quick responses even with large document collections
27
+ - **Content-Focused**: Explore ideas and concepts from the essays, not just information about the author
28
+
29
+ ## πŸ”§ How It Works
30
+
31
+ Behind the scenes, this application:
32
+
33
+ 1. **Loads and Processes Documents**: Breaks down essay content into manageable chunks
34
+ 2. **Creates Embeddings**: Converts text into numerical representations using Snowflake/snowflake-arctic-embed-m
35
+ 3. **Builds a Vector Database**: Stores the embeddings in a FAISS vector store for efficient retrieval
36
+ 4. **Retrieves Relevant Content**: Finds the most relevant essay sections based on your questions
37
+ 5. **Generates Thoughtful Responses**: Uses Meta-Llama-3.1-8B-Instruct to craft helpful answers based on the retrieved content
38
+
39
+ ## πŸ€” Example Questions
40
+
41
+ - "What are some key strategies for starting a successful startup?"
42
+ - "Why is Silicon Valley considered a hub for tech innovation?"
43
+ - "How can good design improve user experience in technology products?"
44
+
45
+ ## πŸ› οΈ Technical Details
46
+
47
+ This application uses:
48
+ - **LangChain**: For document processing and orchestrating the RAG pipeline
49
+ - **FAISS**: For efficient vector similarity search
50
+ - **HuggingFace Endpoints**:
51
+ - NousResearch/Meta-Llama-3.1-8B-Instruct for text generation
52
+ - Snowflake/snowflake-arctic-embed-m for embeddings
53
+ - **Chainlit**: For the interactive chat interface
54
+ - **Hugging Face Spaces**: For deployment and hosting
55
+
56
+ Happy exploring the fascinating content with open source AI! πŸ“šβœ¨
57
+
58
+ ### HuggingFace Endpoint Usage
59
+ LLM Endpoint
60
+ ![LLM Endpoint Usage](llm_endpoint_usage.jpeg)
61
+
62
+ Embedding Endpoint
63
+ ![Embedding Endpoint Usage](embedding_endpoint_usage.jpeg)