deepali1021 commited on
Commit
1db18b9
·
1 Parent(s): 35d3e5e

chainlit with open source endpoint'

Browse files
Files changed (8) hide show
  1. .env.sample +5 -0
  2. .gitignore +6 -0
  3. Dockerfile +29 -0
  4. app.py +198 -0
  5. chainlit.md +1 -0
  6. data/paul_graham_essays.txt +0 -0
  7. requirements.txt +6 -0
  8. solution_app.py +190 -0
.env.sample ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
2
+ HF_LLM_ENDPOINT="YOUR_LLM_ENDPOINT_URL_HERE"
3
+ HF_EMBED_ENDPOINT="YOUR_EMBED_MODEL_ENDPOINT_URL_HERE"
4
+ HF_TOKEN="YOUR_HF_TOKEN_HERE"
5
+ # !!! DO NOT UPDATE THIS FILE DIRECTLY. MAKE A COPY AND RENAME IT `.env` TO PROCEED !!! #
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .env
2
+ __pycache__/
3
+ .chainlit
4
+ *.faiss
5
+ *.pkl
6
+ .files
Dockerfile ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Get a distribution that has uv already installed
2
+ FROM ghcr.io/astral-sh/uv:python3.13-bookworm-slim
3
+
4
+ # Add user - this is the user that will run the app
5
+ # If you do not set user, the app will run as root (undesirable)
6
+ RUN useradd -m -u 1000 user
7
+ USER user
8
+
9
+ # Set the home directory and path
10
+ ENV HOME=/home/user \
11
+ PATH=/home/user/.local/bin:$PATH
12
+
13
+ ENV UVICORN_WS_PROTOCOL=websockets
14
+
15
+ # Set the working directory
16
+ WORKDIR $HOME/app
17
+
18
+ # Copy the app to the container
19
+ COPY --chown=user . $HOME/app
20
+
21
+ # Install the dependencies
22
+ # RUN uv sync --frozen
23
+ RUN uv sync
24
+
25
+ # Expose the port
26
+ EXPOSE 7860
27
+
28
+ # Run the app
29
+ CMD ["uv", "run", "chainlit", "run", "solution_app.py", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+ from tqdm.asyncio import tqdm_asyncio
15
+ import asyncio
16
+ from tqdm.asyncio import tqdm
17
+
18
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
19
+ # ---- ENV VARIABLES ---- #
20
+ """
21
+ This function will load our environment file (.env) if it is present.
22
+
23
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
24
+ """
25
+ load_dotenv()
26
+
27
+ """
28
+ We will load our environment variables here.
29
+ """
30
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
31
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
32
+ HF_TOKEN = os.environ["HF_TOKEN"]
33
+
34
+ # ---- GLOBAL DECLARATIONS ---- #
35
+
36
+ # -- RETRIEVAL -- #
37
+ """
38
+ 1. Load Documents from Text File
39
+ 2. Split Documents into Chunks
40
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
41
+ 4. Index Files if they do not exist, otherwise load the vectorstore
42
+ """
43
+ ### 1. CREATE TEXT LOADER AND LOAD DOCUMENTS
44
+ ### NOTE: PAY ATTENTION TO THE PATH THEY ARE IN.
45
+ text_loader = TextLoader("./data/paul_graham_essays.txt")
46
+ documents = text_loader.load();
47
+
48
+ ### 2. CREATE TEXT SPLITTER AND SPLIT DOCUMENTS
49
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
50
+ split_documents = text_splitter.split_documents(documents)
51
+
52
+ ### 3. LOAD HUGGINGFACE EMBEDDINGS
53
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
54
+ model=HF_EMBED_ENDPOINT,
55
+ task="feature-extraction",
56
+ huggingfacehub_api_token=HF_TOKEN,
57
+ )
58
+
59
+ async def add_documents_async(vectorstore, documents):
60
+ await vectorstore.aadd_documents(documents)
61
+
62
+ async def process_batch(vectorstore, batch, is_first_batch, pbar):
63
+ if is_first_batch:
64
+ result = await FAISS.afrom_documents(batch, hf_embeddings)
65
+ else:
66
+ await add_documents_async(vectorstore, batch)
67
+ result = vectorstore
68
+ pbar.update(len(batch))
69
+ return result
70
+
71
+ async def main():
72
+ print("Indexing Files")
73
+
74
+ vectorstore = None
75
+ batch_size = 32
76
+
77
+ batches = [split_documents[i:i+batch_size] for i in range(0, len(split_documents), batch_size)]
78
+
79
+ async def process_all_batches():
80
+ nonlocal vectorstore
81
+ tasks = []
82
+ pbars = []
83
+
84
+ for i, batch in enumerate(batches):
85
+ pbar = tqdm(total=len(batch), desc=f"Batch {i+1}/{len(batches)}", position=i)
86
+ pbars.append(pbar)
87
+
88
+ if i == 0:
89
+ vectorstore = await process_batch(None, batch, True, pbar)
90
+ else:
91
+ tasks.append(process_batch(vectorstore, batch, False, pbar))
92
+
93
+ if tasks:
94
+ await asyncio.gather(*tasks)
95
+
96
+ for pbar in pbars:
97
+ pbar.close()
98
+
99
+ await process_all_batches()
100
+
101
+ hf_retriever = vectorstore.as_retriever()
102
+ print("\nIndexing complete. Vectorstore is ready for use.")
103
+ return hf_retriever
104
+
105
+ async def run():
106
+ retriever = await main()
107
+ return retriever
108
+
109
+ hf_retriever = asyncio.run(run())
110
+
111
+ # -- AUGMENTED -- #
112
+ """
113
+ 1. Define a String Template
114
+ 2. Create a Prompt Template from the String Template
115
+ """
116
+ ### 1. DEFINE STRING TEMPLATE
117
+ RAG_PROMPT_TEMPLATE = """\
118
+ <|start_header_id|>system<|end_header_id|>
119
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
120
+
121
+ <|start_header_id|>user<|end_header_id|>
122
+ User Query:
123
+ {query}
124
+
125
+ Context:
126
+ {context}<|eot_id|>
127
+
128
+ <|start_header_id|>assistant<|end_header_id|>
129
+ """
130
+
131
+ ### 2. CREATE PROMPT TEMPLATE
132
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
133
+
134
+ # -- GENERATION -- #
135
+ """
136
+ 1. Create a HuggingFaceEndpoint for the LLM
137
+ """
138
+ ### 1. CREATE HUGGINGFACE ENDPOINT FOR LLM
139
+ hf_llm = HuggingFaceEndpoint(
140
+ endpoint_url=HF_LLM_ENDPOINT,
141
+ max_new_tokens=512,
142
+ top_k=10,
143
+ top_p=0.95,
144
+ temperature=0.3,
145
+ repetition_penalty=1.15,
146
+ huggingfacehub_api_token=HF_TOKEN,
147
+ )
148
+
149
+ @cl.author_rename
150
+ def rename(original_author: str):
151
+ """
152
+ This function can be used to rename the 'author' of a message.
153
+
154
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
155
+ """
156
+ rename_dict = {
157
+ "Assistant" : "Paul Graham Essay Bot"
158
+ }
159
+ return rename_dict.get(original_author, original_author)
160
+
161
+ @cl.on_chat_start
162
+ async def start_chat():
163
+ """
164
+ This function will be called at the start of every user session.
165
+
166
+ We will build our LCEL RAG chain here, and store it in the user session.
167
+
168
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
169
+ """
170
+
171
+ ### BUILD LCEL RAG CHAIN THAT ONLY RETURNS TEXT
172
+ lcel_rag_chain = (
173
+ {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
174
+ | rag_prompt | hf_llm
175
+ )
176
+
177
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
178
+
179
+ @cl.on_message
180
+ async def main(message: cl.Message):
181
+ """
182
+ This function will be called every time a message is recieved from a session.
183
+
184
+ We will use the LCEL RAG chain to generate a response to the user query.
185
+
186
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
187
+ """
188
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
189
+
190
+ msg = cl.Message(content="")
191
+
192
+ async for chunk in lcel_rag_chain.astream(
193
+ {"query": message.content},
194
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
195
+ ):
196
+ await msg.stream_token(chunk)
197
+
198
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # FILL OUT YOUR CHAINLIT MD HERE WITH A DESCRIPTION OF YOUR APPLICATION
data/paul_graham_essays.txt ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ chainlit==0.7.700
2
+ cohere==4.37
3
+ openai==1.3.5
4
+ tiktoken==0.5.1
5
+ python-dotenv==1.0.0
6
+ pydantic==2.10.1
solution_app.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+ from tqdm.asyncio import tqdm_asyncio
15
+ import asyncio
16
+ from tqdm.asyncio import tqdm
17
+
18
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
19
+ # ---- ENV VARIABLES ---- #
20
+ """
21
+ This function will load our environment file (.env) if it is present.
22
+
23
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
24
+ """
25
+ load_dotenv()
26
+
27
+ """
28
+ We will load our environment variables here.
29
+ """
30
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
31
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
32
+ HF_TOKEN = os.environ["HF_TOKEN"]
33
+
34
+ # ---- GLOBAL DECLARATIONS ---- #
35
+
36
+ # -- RETRIEVAL -- #
37
+ """
38
+ 1. Load Documents from Text File
39
+ 2. Split Documents into Chunks
40
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
41
+ 4. Index Files if they do not exist, otherwise load the vectorstore
42
+ """
43
+ document_loader = TextLoader("./data/paul_graham_essays.txt")
44
+ documents = document_loader.load()
45
+
46
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
47
+ split_documents = text_splitter.split_documents(documents)
48
+
49
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
50
+ model=HF_EMBED_ENDPOINT,
51
+ task="feature-extraction",
52
+ huggingfacehub_api_token=HF_TOKEN,
53
+ )
54
+
55
+ async def add_documents_async(vectorstore, documents):
56
+ await vectorstore.aadd_documents(documents)
57
+
58
+ async def process_batch(vectorstore, batch, is_first_batch, pbar):
59
+ if is_first_batch:
60
+ result = await FAISS.afrom_documents(batch, hf_embeddings)
61
+ else:
62
+ await add_documents_async(vectorstore, batch)
63
+ result = vectorstore
64
+ pbar.update(len(batch))
65
+ return result
66
+
67
+ async def main():
68
+ print("Indexing Files")
69
+
70
+ vectorstore = None
71
+ batch_size = 32
72
+
73
+ batches = [split_documents[i:i+batch_size] for i in range(0, len(split_documents), batch_size)]
74
+
75
+ async def process_all_batches():
76
+ nonlocal vectorstore
77
+ tasks = []
78
+ pbars = []
79
+
80
+ for i, batch in enumerate(batches):
81
+ pbar = tqdm(total=len(batch), desc=f"Batch {i+1}/{len(batches)}", position=i)
82
+ pbars.append(pbar)
83
+
84
+ if i == 0:
85
+ vectorstore = await process_batch(None, batch, True, pbar)
86
+ else:
87
+ tasks.append(process_batch(vectorstore, batch, False, pbar))
88
+
89
+ if tasks:
90
+ await asyncio.gather(*tasks)
91
+
92
+ for pbar in pbars:
93
+ pbar.close()
94
+
95
+ await process_all_batches()
96
+
97
+ hf_retriever = vectorstore.as_retriever()
98
+ print("\nIndexing complete. Vectorstore is ready for use.")
99
+ return hf_retriever
100
+
101
+ async def run():
102
+ retriever = await main()
103
+ return retriever
104
+
105
+ hf_retriever = asyncio.run(run())
106
+
107
+ # -- AUGMENTED -- #
108
+ """
109
+ 1. Define a String Template
110
+ 2. Create a Prompt Template from the String Template
111
+ """
112
+ RAG_PROMPT_TEMPLATE = """\
113
+ <|start_header_id|>system<|end_header_id|>
114
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
115
+
116
+ <|start_header_id|>user<|end_header_id|>
117
+ User Query:
118
+ {query}
119
+
120
+ Context:
121
+ {context}<|eot_id|>
122
+
123
+ <|start_header_id|>assistant<|end_header_id|>
124
+ """
125
+
126
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
127
+
128
+ # -- GENERATION -- #
129
+ """
130
+ 1. Create a HuggingFaceEndpoint for the LLM
131
+ """
132
+ hf_llm = HuggingFaceEndpoint(
133
+ endpoint_url=HF_LLM_ENDPOINT,
134
+ max_new_tokens=512,
135
+ top_k=10,
136
+ top_p=0.95,
137
+ temperature=0.3,
138
+ repetition_penalty=1.15,
139
+ huggingfacehub_api_token=HF_TOKEN,
140
+ )
141
+
142
+ @cl.author_rename
143
+ def rename(original_author: str):
144
+ """
145
+ This function can be used to rename the 'author' of a message.
146
+
147
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
148
+ """
149
+ rename_dict = {
150
+ "Assistant" : "Paul Graham Essay Bot"
151
+ }
152
+ return rename_dict.get(original_author, original_author)
153
+
154
+ @cl.on_chat_start
155
+ async def start_chat():
156
+ """
157
+ This function will be called at the start of every user session.
158
+
159
+ We will build our LCEL RAG chain here, and store it in the user session.
160
+
161
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
162
+ """
163
+
164
+ lcel_rag_chain = (
165
+ {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
166
+ | rag_prompt | hf_llm
167
+ )
168
+
169
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
170
+
171
+ @cl.on_message
172
+ async def main(message: cl.Message):
173
+ """
174
+ This function will be called every time a message is recieved from a session.
175
+
176
+ We will use the LCEL RAG chain to generate a response to the user query.
177
+
178
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
179
+ """
180
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
181
+
182
+ msg = cl.Message(content="")
183
+
184
+ for chunk in await cl.make_async(lcel_rag_chain.stream)(
185
+ {"query": message.content},
186
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
187
+ ):
188
+ await msg.stream_token(chunk)
189
+
190
+ await msg.send()