|
import streamlit as st |
|
from idc_index import index |
|
from pathlib import Path |
|
import pydicom |
|
import pandas as pd |
|
from tempfile import TemporaryDirectory |
|
import os |
|
from pathlib import Path |
|
import pydicom.datadict as dd |
|
import shutil |
|
import papermill as pm |
|
import subprocess |
|
from PIL import Image |
|
|
|
|
|
|
|
|
|
st.title("DICOM Classification Demo") |
|
st.write("Select IDC data to download, extract images and metadata, and perform inference using three pre-trained models") |
|
st.write("NOTE: This demo only works for classification of MR series of the prostate - T2 weighted axial, DWI, ADC and DCE") |
|
st.write("NOTE: These models were trained on patients from QIN-Prostate-Repeatability PCAMPMRI-00001 to PCAMPMRI-00012 and on ProstateX ProstateX-0000 to ProstateX-0275 patients. Therefore it is wise to not evaluate on those patients." ) |
|
|
|
|
|
client = index.IDCClient() |
|
index_df = client.index |
|
|
|
|
|
st.subheader("Choose IDC Data to Process") |
|
collection_ids = index_df["collection_id"].unique() |
|
|
|
|
|
collection_ids = [f for f in collection_ids if "prostate" in f] |
|
print('collection_ids: ' + str(collection_ids)) |
|
selected_collection_id = st.selectbox("Select Collection ID", collection_ids) |
|
|
|
|
|
df_filtered_by_collection = index_df[index_df["collection_id"] == selected_collection_id] |
|
|
|
patients = df_filtered_by_collection["PatientID"].unique() |
|
patients = sorted(patients) |
|
selected_patient_id = st.selectbox("Select Patient ID", patients) |
|
|
|
|
|
df_filtered_by_patient = df_filtered_by_collection[df_filtered_by_collection["PatientID"] == selected_patient_id] |
|
|
|
|
|
modalities = ["MR"] |
|
selected_modality = st.selectbox("Select Modality", modalities) |
|
|
|
|
|
df_filtered_by_modality = df_filtered_by_patient[df_filtered_by_patient["Modality"] == selected_modality] |
|
|
|
studies = df_filtered_by_modality["StudyInstanceUID"].unique() |
|
studies = sorted(studies) |
|
selected_study = st.selectbox("Select Study", studies) |
|
|
|
|
|
df_filtered_by_study = df_filtered_by_modality[df_filtered_by_modality["StudyInstanceUID"] == selected_study] |
|
|
|
series = df_filtered_by_study["SeriesInstanceUID"].unique() |
|
series = sorted(series) |
|
|
|
series_descriptions = df_filtered_by_study[df_filtered_by_study['SeriesInstanceUID'].isin(series)]['SeriesDescription'].values |
|
|
|
print('number of series: ' + str(len(series))) |
|
print('series_descriptions: ' + str(series_descriptions)) |
|
print('number of series_descriptions: ' + str(len(series_descriptions))) |
|
|
|
selected_series = st.selectbox("Select Series", series) |
|
|
|
print('selected_series: ' + str(selected_series)) |
|
|
|
|
|
if st.button("Run inference"): |
|
|
|
|
|
st.write("Button pressed! Running inference using three models") |
|
|
|
if not os.path.exists("DICOMScanClassification_user_demo.ipynb"): |
|
subprocess.run(["wget", "https://raw.githubusercontent.com/deepakri201/DICOMScanClassification_pw41/main/DICOMScanClassification_user_demo.ipynb"]) |
|
|
|
if not os.path.exists("scaling_factors.csv"): |
|
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/scaling_factors.csv"]) |
|
|
|
if not os.path.exists("metadata_only_model.zip"): |
|
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/metadata_only_model.zip"]) |
|
subprocess.run(["unzip", "metadata_only_model.zip"]) |
|
|
|
if not os.path.exists("images_and_metadata_model.zip"): |
|
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_and_metadata_model.zip"]) |
|
subprocess.run(["unzip", "images_and_metadata_model.zip"]) |
|
|
|
if not os.path.exists("images_only_model.zip"): |
|
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_only_model.zip"]) |
|
subprocess.run(["unzip", "images_only_model.zip"]) |
|
|
|
subprocess.run(["papermill", "-p", "SeriesInstanceUID", selected_series, "DICOMScanClassification_user_demo.ipynb", "output.ipynb"]) |
|
|
|
st.write(subprocess.run(["ls","-R"])) |
|
|
|
with open('output.ipynb', "rb") as f: |
|
st.download_button( |
|
label="Download the output notebook file", |
|
data=f, |
|
file_name="output.ipynb", |
|
mime="application/json" |
|
) |
|
|
|
|
|
st.write(pd.read_csv('classification_results.csv')) |
|
|
|
|
|
image_path = 'image_for_classification.png' |
|
image = Image.open(image_path).convert('L') |
|
st.image(image, caption='input image for classification', use_column_width=True) |
|
|
|
|