deepakri201's picture
fixing reading csv
8017014
raw
history blame
4.07 kB
import streamlit as st
from idc_index import index
from pathlib import Path
import pydicom
import pandas as pd
from tempfile import TemporaryDirectory
import os
from pathlib import Path
import pydicom.datadict as dd
import shutil
import papermill as pm
import subprocess
from PIL import Image
st.write(os.listdir())
# Main Streamlit app code
st.title("DICOM Classification Demo")
st.write("Select IDC data to download, extract images and metadata, and perform inference using three pre-trained models")
# Fetch IDC index
client = index.IDCClient()
index_df = client.index
# Option to choose IDC data
st.subheader("Choose IDC Data to Process")
collection_ids = index_df["collection_id"].unique()
selected_collection_id = st.selectbox("Select Collection ID", collection_ids)
# Filter dataframe based on selected collection_id
df_filtered_by_collection = index_df[index_df["collection_id"] == selected_collection_id]
patients = df_filtered_by_collection["PatientID"].unique()
selected_patient_id = st.selectbox("Select Patient ID", patients)
# Filter dataframe based on selected patient_id
df_filtered_by_patient = df_filtered_by_collection[df_filtered_by_collection["PatientID"] == selected_patient_id]
modalities = df_filtered_by_patient["Modality"].unique()
selected_modality = st.selectbox("Select Modality", modalities)
# Filter dataframe based on selected modality
df_filtered_by_modality = df_filtered_by_patient[df_filtered_by_patient["Modality"] == selected_modality]
studies = df_filtered_by_modality["StudyInstanceUID"].unique()
selected_study = st.selectbox("Select Study", studies)
# Filter dataframe based on selected study
df_filtered_by_study = df_filtered_by_modality[df_filtered_by_modality["StudyInstanceUID"] == selected_study]
series = df_filtered_by_study["SeriesInstanceUID"].unique()
selected_series = st.selectbox("Select Series", series)
print('selected_series: ' + str(selected_series))
# Button to run the notebook - which loads the pretrained models and runs inference
if st.button("Run inference"):
# Code to run when the button is pressed
st.write("Button pressed! Running inference")
if not os.path.exists("DICOMScanClassification_user_demo.ipynb"):
subprocess.run(["wget", "https://raw.githubusercontent.com/deepakri201/DICOMScanClassification_pw41/main/DICOMScanClassification_user_demo.ipynb"])
if not os.path.exists("scaling_factors.csv"):
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/scaling_factors.csv"])
if not os.path.exists("metadata_only_model.zip"):
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/metadata_only_model.zip"])
subprocess.run(["unzip", "metadata_only_model.zip"])
if not os.path.exists("images_and_metadata_model.zip"):
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_and_metadata_model.zip"])
subprocess.run(["unzip", "images_and_metadata_model.zip"])
if not os.path.exists("images_only_model.zip"):
subprocess.run(["wget", "https://github.com/deepakri201/DICOMScanClassification/releases/download/v1.0.0/images_only_model.zip"])
subprocess.run(["unzip", "images_only_model.zip"])
subprocess.run(["papermill", "-p", "SeriesInstanceUID", selected_series, "DICOMScanClassification_user_demo.ipynb", "output.ipynb"])
st.write(subprocess.run(["ls","-R"]))
with open('output.ipynb', "rb") as f:
st.download_button(
label="Download the output notebook file",
data=f,
file_name="output.ipynb",
mime="application/json"
)
# show classification results df
st.write(pd.read_csv('classification_results.csv'))
# show image
image_path = 'image_for_classification.png'
image = Image.open(image_path).convert('L')
st.image(image, caption='input image for classification', use_column_width=True)