File size: 2,860 Bytes
7837144 fb3df3b 7837144 fb3df3b 7837144 b8d3c98 7837144 9a8d565 7837144 b7cebe5 7837144 b7cebe5 b8d3c98 b7cebe5 b8d3c98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import streamlit as st
from idc_index import index
from pathlib import Path
import pydicom
import pandas as pd
# import pyarrow as pa
# import pyarrow.parquet as pq
from tempfile import TemporaryDirectory
import os
from pathlib import Path
# import polars
import pydicom.datadict as dd
import shutil
import papermill as pm
import subprocess
# Main Streamlit app code
st.title("DICOM Classification Demo")
st.write("Select IDC data to download, extract images and metadata, and perform inference using three pre-trained models")
# Fetch IDC index
client = index.IDCClient()
index_df = client.index
# Option to choose IDC data
st.subheader("Choose IDC Data to Process")
collection_ids = index_df["collection_id"].unique()
selected_collection_id = st.selectbox("Select Collection ID", collection_ids)
# Filter dataframe based on selected collection_id
df_filtered_by_collection = index_df[index_df["collection_id"] == selected_collection_id]
patients = df_filtered_by_collection["PatientID"].unique()
selected_patient_id = st.selectbox("Select Patient ID", patients)
# Filter dataframe based on selected patient_id
df_filtered_by_patient = df_filtered_by_collection[df_filtered_by_collection["PatientID"] == selected_patient_id]
modalities = df_filtered_by_patient["Modality"].unique()
selected_modality = st.selectbox("Select Modality", modalities)
# Filter dataframe based on selected modality
df_filtered_by_modality = df_filtered_by_patient[df_filtered_by_patient["Modality"] == selected_modality]
studies = df_filtered_by_modality["StudyInstanceUID"].unique()
selected_study = st.selectbox("Select Study", studies)
# Filter dataframe based on selected study
df_filtered_by_study = df_filtered_by_modality[df_filtered_by_modality["StudyInstanceUID"] == selected_study]
series = df_filtered_by_study["SeriesInstanceUID"].unique()
selected_series = st.selectbox("Select Series", series)
print('selected_series: ' + str(selected_series))
# Button to run the notebook - which loads the pretrained models and runs inference
if st.button("Run inference"):
# Code to run when the button is pressed
st.write("Button pressed! Running inference")
if os.path.exists("DICOMScanClassification_user_demo.ipynb"):
os.remove("DICOMScanClassification_user_demo.ipynb")
subprocess.run(["wget", "https://raw.githubusercontent.com/deepakri201/DICOMScanClassification_pw41/main/DICOMScanClassification_user_demo.ipynb"])
pm.execute_notebook(
"DICOMScanClassification_user_demo.ipynb",
'output.ipynb',
parameters = dict(SeriesInstanceUID=selected_series)
)
with open('output.ipynb', "rb") as f:
st.download_button(
label="Download the output notebook file",
data=f,
file_name="output.ipynb",
mime="application/json"
)
|