Spaces:
Runtime error
Runtime error
import gradio as gr | |
def main(): | |
title = """<h1 align="center">π€ Multilingual ASR π¬</h1>""" | |
description = """ | |
π» This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br> | |
<br> | |
βοΈ Components of the tool:<br> | |
<br> | |
- Real-time multilingual speech recognition<br> | |
- Language identification<br> | |
- Sentiment analysis of the transcriptions<br> | |
<br> | |
π― The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br> | |
<br> | |
π The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br> | |
<br> | |
β The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br> | |
<br> | |
β Use the microphone for real-time speech recognition.<br> | |
<br> | |
β‘οΈ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br> | |
""" | |
custom_css = """ | |
#banner-image { | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
#chat-message { | |
font-size: 14px; | |
min-height: 300px; | |
} | |
""" | |
block = gr.Blocks(css=custom_css) | |
with block: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML(description) | |
with gr.Group(): | |
with gr.Box(): | |
audio = gr.Audio( | |
label="Input Audio", | |
show_label=False, | |
source="microphone", | |
type="filepath" | |
) | |
sentiment_option = gr.Radio( | |
choices=["Sentiment Only", "Sentiment + Score"], | |
label="Select an option", | |
default="Sentiment Only" | |
) | |
btn = gr.Button("Transcribe") | |
lang_str = gr.Textbox(label="Language") | |
text = gr.Textbox(label="Transcription") | |
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True) | |
prediction = gr.Textbox(label="Prediction") | |
language_translation = gr.Textbox(label="Language Translation") | |
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output, prediction,language_translation]) | |
# gr.HTML(''' | |
# <div class="footer"> | |
# <p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> | |
# </p> | |
# </div> | |
# ''') | |
block.launch() |