deep-learning-analytics commited on
Commit
7b76a8c
·
1 Parent(s): a604262

displaying predicted classes

Browse files
Files changed (1) hide show
  1. app.py +7 -1
app.py CHANGED
@@ -48,11 +48,17 @@ if raw_image is not None:
48
  # Second, apply argmax on the class dimension
49
  seg = upsampled_logits.argmax(dim=1)[0]
50
  color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
 
51
  for label, color in enumerate(palette):
52
  color_seg[seg == label, :] = color
 
53
  # Convert to BGR
54
  color_seg = color_seg[..., ::-1]
55
  # Show image + mask
56
  img = np.array(image) * 0.5 + color_seg * 0.5
57
  img = img.astype(np.uint8)
58
- st.image(img, caption="Segmented Image")
 
 
 
 
 
48
  # Second, apply argmax on the class dimension
49
  seg = upsampled_logits.argmax(dim=1)[0]
50
  color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3\
51
+ predicted_labels = []
52
  for label, color in enumerate(palette):
53
  color_seg[seg == label, :] = color
54
+ predicted_labels.append(label)
55
  # Convert to BGR
56
  color_seg = color_seg[..., ::-1]
57
  # Show image + mask
58
  img = np.array(image) * 0.5 + color_seg * 0.5
59
  img = img.astype(np.uint8)
60
+ st.image(img, caption="Segmented Image")
61
+
62
+ st.header('Predicted Labels')
63
+ for idx, label in enumerate(predicted_labels):
64
+ st.subheader(f'{idx+1}) {label}')