deep-div commited on
Commit
6e5097e
·
verified ·
1 Parent(s): 122932a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +173 -172
app.py CHANGED
@@ -1,172 +1,173 @@
1
- import streamlit as st
2
- import os
3
- import io
4
- from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
5
- import time
6
- import json
7
- from typing import List
8
- import torch
9
- import random
10
- import logging
11
-
12
- if torch.cuda.is_available():
13
- device = torch.device("cuda:0")
14
- else:
15
- device = torch.device("cpu")
16
- logging.warning("GPU not found, using CPU, translation will be very slow.")
17
-
18
- st.cache(suppress_st_warning=True, allow_output_mutation=True)
19
- st.set_page_config(page_title="M2M100 Translator")
20
-
21
- lang_id = {
22
- "Afrikaans": "af",
23
- "Amharic": "am",
24
- "Arabic": "ar",
25
- "Asturian": "ast",
26
- "Azerbaijani": "az",
27
- "Bashkir": "ba",
28
- "Belarusian": "be",
29
- "Bulgarian": "bg",
30
- "Bengali": "bn",
31
- "Breton": "br",
32
- "Bosnian": "bs",
33
- "Catalan": "ca",
34
- "Cebuano": "ceb",
35
- "Czech": "cs",
36
- "Welsh": "cy",
37
- "Danish": "da",
38
- "German": "de",
39
- "Greeek": "el",
40
- "English": "en",
41
- "Spanish": "es",
42
- "Estonian": "et",
43
- "Persian": "fa",
44
- "Fulah": "ff",
45
- "Finnish": "fi",
46
- "French": "fr",
47
- "Western Frisian": "fy",
48
- "Irish": "ga",
49
- "Gaelic": "gd",
50
- "Galician": "gl",
51
- "Gujarati": "gu",
52
- "Hausa": "ha",
53
- "Hebrew": "he",
54
- "Hindi": "hi",
55
- "Croatian": "hr",
56
- "Haitian": "ht",
57
- "Hungarian": "hu",
58
- "Armenian": "hy",
59
- "Indonesian": "id",
60
- "Igbo": "ig",
61
- "Iloko": "ilo",
62
- "Icelandic": "is",
63
- "Italian": "it",
64
- "Japanese": "ja",
65
- "Javanese": "jv",
66
- "Georgian": "ka",
67
- "Kazakh": "kk",
68
- "Central Khmer": "km",
69
- "Kannada": "kn",
70
- "Korean": "ko",
71
- "Luxembourgish": "lb",
72
- "Ganda": "lg",
73
- "Lingala": "ln",
74
- "Lao": "lo",
75
- "Lithuanian": "lt",
76
- "Latvian": "lv",
77
- "Malagasy": "mg",
78
- "Macedonian": "mk",
79
- "Malayalam": "ml",
80
- "Mongolian": "mn",
81
- "Marathi": "mr",
82
- "Malay": "ms",
83
- "Burmese": "my",
84
- "Nepali": "ne",
85
- "Dutch": "nl",
86
- "Norwegian": "no",
87
- "Northern Sotho": "ns",
88
- "Occitan": "oc",
89
- "Oriya": "or",
90
- "Panjabi": "pa",
91
- "Polish": "pl",
92
- "Pushto": "ps",
93
- "Portuguese": "pt",
94
- "Romanian": "ro",
95
- "Russian": "ru",
96
- "Sindhi": "sd",
97
- "Sinhala": "si",
98
- "Slovak": "sk",
99
- "Slovenian": "sl",
100
- "Somali": "so",
101
- "Albanian": "sq",
102
- "Serbian": "sr",
103
- "Swati": "ss",
104
- "Sundanese": "su",
105
- "Swedish": "sv",
106
- "Swahili": "sw",
107
- "Tamil": "ta",
108
- "Thai": "th",
109
- "Tagalog": "tl",
110
- "Tswana": "tn",
111
- "Turkish": "tr",
112
- "Ukrainian": "uk",
113
- "Urdu": "ur",
114
- "Uzbek": "uz",
115
- "Vietnamese": "vi",
116
- "Wolof": "wo",
117
- "Xhosa": "xh",
118
- "Yiddish": "yi",
119
- "Yoruba": "yo",
120
- "Chinese": "zh",
121
- "Zulu": "zu",
122
- }
123
-
124
-
125
- @st.cache(suppress_st_warning=True, allow_output_mutation=True)
126
- def load_model(
127
- pretrained_model: str = "facebook/m2m100_1.2B",
128
- cache_dir: str = "models/",
129
- ):
130
- tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
131
- model = M2M100ForConditionalGeneration.from_pretrained(
132
- pretrained_model, cache_dir=cache_dir
133
- ).to(device)
134
- model.eval()
135
- return tokenizer, model
136
-
137
-
138
- st.title("M2M100 Translator")
139
- st.write("M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this paper https://arxiv.org/abs/2010.11125 and first released in https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 repository. The model that can directly translate between the 9,900 directions of 100 languages.\n")
140
-
141
- st.write(" This demo uses the facebook/m2m100_1.2B model. For local inference see https://github.com/ikergarcia1996/Easy-Translate")
142
-
143
-
144
- user_input: str = st.text_area(
145
- "Input text",
146
- height=200,
147
- max_chars=5120,
148
- )
149
-
150
- source_lang = st.selectbox(label="Source language", options=list(lang_id.keys()))
151
- target_lang = st.selectbox(label="Target language", options=list(lang_id.keys()))
152
-
153
- if st.button("Run"):
154
- time_start = time.time()
155
- tokenizer, model = load_model()
156
-
157
- src_lang = lang_id[source_lang]
158
- trg_lang = lang_id[target_lang]
159
- tokenizer.src_lang = src_lang
160
- with torch.no_grad():
161
- encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
162
- generated_tokens = model.generate(
163
- **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
164
- )
165
- translated_text = tokenizer.batch_decode(
166
- generated_tokens, skip_special_tokens=True
167
- )[0]
168
-
169
- time_end = time.time()
170
- st.success(translated_text)
171
-
172
- st.write(f"Computation time: {round((time_end-time_start),3)} segs")
 
 
1
+ import streamlit as st
2
+ import os
3
+ import io
4
+ from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
5
+ import time
6
+ import json
7
+ from typing import List
8
+ import torch
9
+ import random
10
+ import logging
11
+
12
+ if torch.cuda.is_available():
13
+ device = torch.device("cuda:0")
14
+ else:
15
+ device = torch.device("cpu")
16
+ logging.warning("GPU not found, using CPU, translation will be very slow.")
17
+
18
+ st.cache(suppress_st_warning=True, allow_output_mutation=True)
19
+ st.set_page_config(page_title="M2M100 Translator")
20
+
21
+ lang_id = {
22
+ "Afrikaans": "af",
23
+ "Amharic": "am",
24
+ "Arabic": "ar",
25
+ "Asturian": "ast",
26
+ "Azerbaijani": "az",
27
+ "Bashkir": "ba",
28
+ "Belarusian": "be",
29
+ "Bulgarian": "bg",
30
+ "Bengali": "bn",
31
+ "Breton": "br",
32
+ "Bosnian": "bs",
33
+ "Catalan": "ca",
34
+ "Cebuano": "ceb",
35
+ "Czech": "cs",
36
+ "Welsh": "cy",
37
+ "Danish": "da",
38
+ "German": "de",
39
+ "Greeek": "el",
40
+ "English": "en",
41
+ "Spanish": "es",
42
+ "Estonian": "et",
43
+ "Persian": "fa",
44
+ "Fulah": "ff",
45
+ "Finnish": "fi",
46
+ "French": "fr",
47
+ "Western Frisian": "fy",
48
+ "Irish": "ga",
49
+ "Gaelic": "gd",
50
+ "Galician": "gl",
51
+ "Gujarati": "gu",
52
+ "Hausa": "ha",
53
+ "Hebrew": "he",
54
+ "Hindi": "hi",
55
+ "Croatian": "hr",
56
+ "Haitian": "ht",
57
+ "Hungarian": "hu",
58
+ "Armenian": "hy",
59
+ "Indonesian": "id",
60
+ "Igbo": "ig",
61
+ "Iloko": "ilo",
62
+ "Icelandic": "is",
63
+ "Italian": "it",
64
+ "Japanese": "ja",
65
+ "Javanese": "jv",
66
+ "Georgian": "ka",
67
+ "Kazakh": "kk",
68
+ "Central Khmer": "km",
69
+ "Kannada": "kn",
70
+ "Korean": "ko",
71
+ "Luxembourgish": "lb",
72
+ "Ganda": "lg",
73
+ "Lingala": "ln",
74
+ "Lao": "lo",
75
+ "Lithuanian": "lt",
76
+ "Latvian": "lv",
77
+ "Malagasy": "mg",
78
+ "Macedonian": "mk",
79
+ "Malayalam": "ml",
80
+ "Mongolian": "mn",
81
+ "Marathi": "mr",
82
+ "Malay": "ms",
83
+ "Burmese": "my",
84
+ "Nepali": "ne",
85
+ "Dutch": "nl",
86
+ "Norwegian": "no",
87
+ "Northern Sotho": "ns",
88
+ "Occitan": "oc",
89
+ "Oriya": "or",
90
+ "Panjabi": "pa",
91
+ "Polish": "pl",
92
+ "Pushto": "ps",
93
+ "Portuguese": "pt",
94
+ "Romanian": "ro",
95
+ "Russian": "ru",
96
+ "Sindhi": "sd",
97
+ "Sinhala": "si",
98
+ "Slovak": "sk",
99
+ "Slovenian": "sl",
100
+ "Somali": "so",
101
+ "Albanian": "sq",
102
+ "Serbian": "sr",
103
+ "Swati": "ss",
104
+ "Sundanese": "su",
105
+ "Swedish": "sv",
106
+ "Swahili": "sw",
107
+ "Tamil": "ta",
108
+ "Thai": "th",
109
+ "Tagalog": "tl",
110
+ "Tswana": "tn",
111
+ "Turkish": "tr",
112
+ "Ukrainian": "uk",
113
+ "Urdu": "ur",
114
+ "Uzbek": "uz",
115
+ "Vietnamese": "vi",
116
+ "Wolof": "wo",
117
+ "Xhosa": "xh",
118
+ "Yiddish": "yi",
119
+ "Yoruba": "yo",
120
+ "Chinese": "zh",
121
+ "Zulu": "zu",
122
+ }
123
+
124
+
125
+ @st.cache_resource(suppress_st_warning=True, allow_output_mutation=True)
126
+ def load_model(
127
+ pretrained_model: str = "facebook/m2m100_1.2B",
128
+ cache_dir: str = "models/",
129
+ ):
130
+ tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
131
+ model = M2M100ForConditionalGeneration.from_pretrained(
132
+ pretrained_model, cache_dir=cache_dir
133
+ ).to(device)
134
+ model.eval()
135
+ return tokenizer, model
136
+
137
+
138
+ st.title("M2M100 Translator")
139
+ st.write("M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this paper https://arxiv.org/abs/2010.11125 and first released in https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 repository. The model that can directly translate between the 9,900 directions of 100 languages.\n")
140
+
141
+ st.write(" This demo uses the facebook/m2m100_1.2B model. For local inference see https://github.com/ikergarcia1996/Easy-Translate")
142
+
143
+
144
+ user_input: str = st.text_area(
145
+ "Input text",
146
+ height=200,
147
+ max_chars=5120,
148
+ )
149
+
150
+ source_lang = st.selectbox(label="Source language", options=list(lang_id.keys()))
151
+ target_lang = st.selectbox(label="Target language", options=list(lang_id.keys()))
152
+
153
+ if st.button("Run"):
154
+ with st.spinner("Translating... please wait..."):
155
+ time_start = time.time()
156
+ tokenizer, model = load_model()
157
+
158
+ src_lang = lang_id[source_lang]
159
+ trg_lang = lang_id[target_lang]
160
+ tokenizer.src_lang = src_lang
161
+ with torch.no_grad():
162
+ encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
163
+ generated_tokens = model.generate(
164
+ **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
165
+ )
166
+ translated_text = tokenizer.batch_decode(
167
+ generated_tokens, skip_special_tokens=True
168
+ )[0]
169
+
170
+ time_end = time.time()
171
+ st.success(translated_text)
172
+ st.write(f"Computation time: {round((time_end - time_start), 3)} seconds")
173
+