Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
-
import os
|
3 |
-
import time
|
4 |
import torch
|
5 |
import logging
|
|
|
6 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
7 |
|
8 |
-
#
|
9 |
-
st.set_page_config(page_title="
|
10 |
|
11 |
-
#
|
12 |
-
if torch.cuda.is_available()
|
13 |
-
|
14 |
-
|
15 |
-
device = torch.device("cpu")
|
16 |
-
logging.warning("GPU not found, using CPU, translation will be very slow.")
|
17 |
|
18 |
-
# Language
|
19 |
lang_id = {
|
20 |
"Afrikaans": "af", "Amharic": "am", "Arabic": "ar", "Asturian": "ast",
|
21 |
"Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg",
|
@@ -44,58 +41,58 @@ lang_id = {
|
|
44 |
"Yiddish": "yi", "Yoruba": "yo", "Chinese": "zh", "Zulu": "zu",
|
45 |
}
|
46 |
|
47 |
-
# Cache
|
48 |
@st.cache_resource
|
49 |
-
def load_model(
|
50 |
-
tokenizer = M2M100Tokenizer.from_pretrained(
|
51 |
-
model = M2M100ForConditionalGeneration.from_pretrained(
|
52 |
-
pretrained_model, cache_dir=cache_dir
|
53 |
-
).to(device)
|
54 |
model.eval()
|
55 |
return tokenizer, model
|
56 |
|
57 |
-
#
|
58 |
-
st.title("
|
59 |
-
st.
|
60 |
-
M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation.
|
61 |
-
It supports **100 languages** and translates in **9900 directions**.
|
62 |
-
Model: `facebook/m2m100_1.2B`
|
63 |
-
More info: [Paper](https://arxiv.org/abs/2010.11125) | [Repo](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100)
|
64 |
-
""")
|
65 |
|
66 |
-
#
|
67 |
user_input = st.text_area(
|
68 |
-
"Enter text
|
69 |
height=200,
|
70 |
max_chars=5120,
|
71 |
-
placeholder="
|
72 |
)
|
73 |
|
74 |
-
# Language
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
# Translate Button
|
79 |
-
if st.button("Translate"):
|
80 |
with st.spinner("Translating... Please wait"):
|
81 |
-
|
82 |
tokenizer, model = load_model()
|
83 |
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
tokenizer.src_lang =
|
88 |
with torch.no_grad():
|
89 |
-
|
90 |
-
|
91 |
-
**
|
92 |
-
forced_bos_token_id=tokenizer.get_lang_id(
|
93 |
)
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import torch
|
3 |
import logging
|
4 |
+
import time
|
5 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
6 |
|
7 |
+
# Configure page
|
8 |
+
st.set_page_config(page_title="π Translator", page_icon="π")
|
9 |
|
10 |
+
# Device detection
|
11 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
12 |
+
if device.type == "cpu":
|
13 |
+
logging.warning("β οΈ GPU not found β using CPU (translation may be slow).")
|
|
|
|
|
14 |
|
15 |
+
# Language mapping
|
16 |
lang_id = {
|
17 |
"Afrikaans": "af", "Amharic": "am", "Arabic": "ar", "Asturian": "ast",
|
18 |
"Azerbaijani": "az", "Bashkir": "ba", "Belarusian": "be", "Bulgarian": "bg",
|
|
|
41 |
"Yiddish": "yi", "Yoruba": "yo", "Chinese": "zh", "Zulu": "zu",
|
42 |
}
|
43 |
|
44 |
+
# Cache model/tokenizer loading
|
45 |
@st.cache_resource
|
46 |
+
def load_model():
|
47 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
|
48 |
+
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B").to(device)
|
|
|
|
|
49 |
model.eval()
|
50 |
return tokenizer, model
|
51 |
|
52 |
+
# Title
|
53 |
+
st.title("π M2M100 Language Translator")
|
54 |
+
st.markdown("π Translate text between **100+ languages** using Facebook's `M2M100` multilingual model.")
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Text input
|
57 |
user_input = st.text_area(
|
58 |
+
"βοΈ Enter your text below:",
|
59 |
height=200,
|
60 |
max_chars=5120,
|
61 |
+
placeholder="E.g. Hello, how are you?"
|
62 |
)
|
63 |
|
64 |
+
# Language selections (default: English β Hindi)
|
65 |
+
col1, col2 = st.columns(2)
|
66 |
+
with col1:
|
67 |
+
source_lang = st.selectbox("π Source Language", sorted(lang_id.keys()), index=list(lang_id.keys()).index("English"))
|
68 |
+
with col2:
|
69 |
+
target_lang = st.selectbox("π Target Language", sorted(lang_id.keys()), index=list(lang_id.keys()).index("Hindi"))
|
70 |
|
71 |
# Translate Button
|
72 |
+
if st.button("π Translate", disabled=(not user_input.strip())):
|
73 |
with st.spinner("Translating... Please wait"):
|
74 |
+
start = time.time()
|
75 |
tokenizer, model = load_model()
|
76 |
|
77 |
+
src = lang_id[source_lang]
|
78 |
+
tgt = lang_id[target_lang]
|
79 |
|
80 |
+
tokenizer.src_lang = src
|
81 |
with torch.no_grad():
|
82 |
+
encoded = tokenizer(user_input, return_tensors="pt").to(device)
|
83 |
+
output = model.generate(
|
84 |
+
**encoded,
|
85 |
+
forced_bos_token_id=tokenizer.get_lang_id(tgt)
|
86 |
)
|
87 |
+
result = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
88 |
+
|
89 |
+
end = time.time()
|
90 |
+
st.success("β
Translation complete!")
|
91 |
+
st.markdown("### π Translated Text")
|
92 |
+
st.text_area("Output", value=result, height=150, disabled=True)
|
93 |
+
st.caption(f"β±οΈ Time taken: {round(end - start, 2)} seconds")
|
94 |
|
95 |
+
# Optional reset
|
96 |
+
st.markdown("---")
|
97 |
+
if st.button("π Reset"):
|
98 |
+
st.experimental_rerun()
|