deep-div's picture
Update app.py
9a6bcbb verified
raw
history blame
6.77 kB
import os
import time
import uuid
from datetime import datetime
import gradio as gr
import soundfile as sf
from model import get_pretrained_model, language_to_models
def MyPrint(s):
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"{date_time}: {s}")
title = "# Next-gen Kaldi: Text-to-speech (TTS)"
description = """
This space shows how to convert text to speech with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
See more information by visiting the following links:
- <https://github.com/k2-fsa/sherpa-onnx>
If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
If you want to use Android APKs, please see
<https://k2-fsa.github.io/sherpa/onnx/tts/apk.html>
If you want to use Android text-to-speech engine APKs, please see
<https://k2-fsa.github.io/sherpa/onnx/tts/apk-engine.html>
If you want to download an all-in-one exe for Windows, please see
<https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models>
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
examples = [
[
"English",
"csukuangfj/vits-piper-en_US-john-medium|1 speaker",
"Welcome to our next-generation text-to-speech demo powered by Sherpa-ONNX.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-piper-en_GB-southern_english_male-medium|8 speakers",
"This model demonstrates clear British English with a natural male voice.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-coqui-en-ljspeech|1 speaker",
"The quick brown fox jumps over the lazy dog. Numbers: 1234567890.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-piper-en_US-kathleen-low|1 speaker",
"Artificial intelligence is transforming industries with voice technologies.",
0,
1.0,
],
[
"English",
"csukuangfj/vits-piper-en_GB-alan-medium|1 speaker",
"Today is a perfect day to explore machine learning and natural language processing.",
0,
1.0,
],
]
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown(
choices=choices,
value=choices[0],
interactive=True,
)
raise ValueError(f"Unsupported language: {language}")
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process(language: str, repo_id: str, text: str, sid: str, speed: float):
MyPrint(f"Input text: {text}. sid: {sid}, speed: {speed}")
sid = int(sid)
tts = get_pretrained_model(repo_id, speed)
start = time.time()
audio = tts.generate(text, sid=sid)
end = time.time()
if len(audio.samples) == 0:
raise ValueError(
"Error in generating audios. Please read previous error messages."
)
duration = len(audio.samples) / audio.sample_rate
elapsed_seconds = end - start
rtf = elapsed_seconds / duration
info = f"""
Wave duration : {duration:.3f} s <br/>
Processing time: {elapsed_seconds:.3f} s <br/>
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>
"""
MyPrint(info)
MyPrint(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
filename = str(uuid.uuid4())
filename = f"{filename}.wav"
sf.write(
filename,
audio.samples,
samplerate=audio.sample_rate,
subtype="PCM_16",
)
return filename, build_html_output(info)
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
with gr.Tabs():
with gr.TabItem("Please input your text"):
input_text = gr.Textbox(
label="Input text",
info="Your text",
lines=3,
placeholder="Please input your text here",
)
input_sid = gr.Textbox(
label="Speaker ID",
info="Speaker ID",
lines=1,
max_lines=1,
value="0",
placeholder="Speaker ID. Valid only for mult-speaker model",
)
input_speed = gr.Slider(
minimum=0.1,
maximum=10,
value=1,
step=0.1,
label="Speed (larger->faster; smaller->slower)",
)
input_button = gr.Button("Submit")
output_audio = gr.Audio(label="Output")
output_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
fn=process,
inputs=[
language_radio,
model_dropdown,
input_text,
input_sid,
input_speed,
],
outputs=[
output_audio,
output_info,
],
)
input_button.click(
process,
inputs=[
language_radio,
model_dropdown,
input_text,
input_sid,
input_speed,
],
outputs=[
output_audio,
output_info,
],
)
gr.Markdown(description)
def download_espeak_ng_data():
os.system(
"""
cd /tmp
wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
tar xf espeak-ng-data.tar.bz2
"""
)
if __name__ == "__main__":
download_espeak_ng_data()
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
demo.launch()