zaincustomerbot / app.py
decodingdatascience's picture
Update app.py
f01883f verified
raw
history blame
1.56 kB
import os
import requests
import gradio as gr
# Get Groq API key from environment variable
groq_api_key = os.environ.get("GROQ_API_KEY")
if not groq_api_key:
raise ValueError("Please set the GROQ_API_KEY in the Hugging Face Space secrets.")
# Groq API configuration
url = "https://api.groq.com/openai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {groq_api_key}"
}
# Prompt template
template = """
You are a friendly and professional customer service assistant for a telecom company.
Respond to the customer's issue below with empathy and clear steps, especially for roaming support.
Customer Query: {query}
Your Response:
"""
# Function to call Groq API
def generate_response(user_query):
structured_prompt = template.format(query=user_query)
body = {
"model": "llama-3.1-8b-instant",
"messages": [
{
"role": "user",
"content": structured_prompt
}
]
}
response = requests.post(url, headers=headers, json=body)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"Error {response.status_code}: {response.text}"
# Gradio interface
gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=4, placeholder="Describe your telecom issue..."),
outputs=gr.Textbox(label="Groq API Response"),
title="Zain Customer Care Support Assistant",
description="Ask your question and get a helpful reply from our AI-powered support assistant."
).launch()