Spaces:
Running
on
Zero
Running
on
Zero
from typing import Dict, List, Any | |
from tangoflux import TangoFluxInference | |
import torchaudio | |
from huggingface_inference_toolkit.logging import logger | |
class EndpointHandler(): | |
def __init__(self, path=""): | |
# Preload all the elements you are going to need at inference. | |
# pseudo: | |
# self.model= load_model(path) | |
self.model = TangoFluxInference(name='declare-lab/TangoFlux',device='cuda') | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
""" | |
data args: | |
inputs (:obj: `str` | `PIL.Image` | `np.array`) | |
kwargs | |
Return: | |
A :obj:`list` | `dict`: will be serialized and returned | |
""" | |
logger.info(f"Received incoming request with {data=}") | |
if "inputs" in data and isinstance(data["inputs"], str): | |
prompt = data.pop("inputs") | |
elif "prompt" in data and isinstance(data["prompt"], str): | |
prompt = data.pop("prompt") | |
else: | |
raise ValueError( | |
"Provided input body must contain either the key `inputs` or `prompt` with the" | |
" prompt to use for the audio generation, and it needs to be a non-empty string." | |
) | |
parameters = data.pop("parameters", {}) | |
num_inference_steps = parameters.get("num_inference_steps", 50) | |
duration = parameters.get("duration", 10) | |
guidance_scale = parameters.get("guidance_scale", 3.5) | |
return self.model.generate(prompt,steps=num_inference_steps, | |
duration=duration, | |
guidance_scale=guidance_scale) |