Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Dict, List, Any | |
| from tangoflux import TangoFluxInference | |
| import torchaudio | |
| from huggingface_inference_toolkit.logging import logger | |
| class EndpointHandler(): | |
| def __init__(self, path=""): | |
| # Preload all the elements you are going to need at inference. | |
| # pseudo: | |
| # self.model= load_model(path) | |
| self.model = TangoFluxInference(name='declare-lab/TangoFlux',device='cuda') | |
| def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| """ | |
| data args: | |
| inputs (:obj: `str` | `PIL.Image` | `np.array`) | |
| kwargs | |
| Return: | |
| A :obj:`list` | `dict`: will be serialized and returned | |
| """ | |
| logger.info(f"Received incoming request with {data=}") | |
| if "inputs" in data and isinstance(data["inputs"], str): | |
| prompt = data.pop("inputs") | |
| elif "prompt" in data and isinstance(data["prompt"], str): | |
| prompt = data.pop("prompt") | |
| else: | |
| raise ValueError( | |
| "Provided input body must contain either the key `inputs` or `prompt` with the" | |
| " prompt to use for the audio generation, and it needs to be a non-empty string." | |
| ) | |
| parameters = data.pop("parameters", {}) | |
| num_inference_steps = parameters.get("num_inference_steps", 50) | |
| duration = parameters.get("duration", 10) | |
| guidance_scale = parameters.get("guidance_scale", 3.5) | |
| return self.model.generate(prompt,steps=num_inference_steps, | |
| duration=duration, | |
| guidance_scale=guidance_scale) |