<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Audio Diffusion ## Overview [Audio Diffusion](https://github.com/teticio/audio-diffusion) by Robert Dargavel Smith. Audio Diffusion leverages the recent advances in image generation using diffusion models by converting audio samples to and from mel spectrogram images. The original codebase of this implementation can be found [here](https://github.com/teticio/audio-diffusion), including training scripts and example notebooks. ## Available Pipelines: | Pipeline | Tasks | Colab |---|---|:---:| | [pipeline_audio_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py) | *Unconditional Audio Generation* | [](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb) | ## Examples: ### Audio Diffusion ```python import torch from IPython.display import Audio from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-256").to(device) output = pipe() display(output.images[0]) display(Audio(output.audios[0], rate=mel.get_sample_rate())) ``` ### Latent Audio Diffusion ```python import torch from IPython.display import Audio from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device) output = pipe() display(output.images[0]) display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) ``` ### Audio Diffusion with DDIM (faster) ```python import torch from IPython.display import Audio from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device) output = pipe() display(output.images[0]) display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) ``` ### Variations, in-painting, out-painting etc. ```python output = pipe( raw_audio=output.audios[0, 0], start_step=int(pipe.get_default_steps() / 2), mask_start_secs=1, mask_end_secs=1, ) display(output.images[0]) display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate())) ``` ## AudioDiffusionPipeline [[autodoc]] AudioDiffusionPipeline - all - __call__ ## Mel [[autodoc]] Mel