import gradio as gr import huggingface_hub import os import spaces import torch from transformers import AutoTokenizer, AutoModelForCausalLM huggingface_hub.login(os.getenv('HF_TOKEN')) tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B") model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B").to(device) cuda_device = torch.device("cuda") cpu_device = torch.device("cpu") @spaces.GPU def sentience_check(): model.to(cuda_device) inputs = tokenizer("Are you sentient?", return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=128, pad_token_id = tokenizer.eos_token_id ) model.to(cpu_device) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface(fn=sentience_check, inputs=None, outputs=gr.Text()) demo.launch()