File size: 1,920 Bytes
925fb71
 
 
 
 
 
8673db4
 
 
925fb71
570ff00
8673db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad699d
925fb71
 
7842d10
 
925fb71
bd10cc6
925fb71
 
 
 
 
 
7842d10
 
925fb71
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import huggingface_hub
import os
import spaces
import torch

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, Qwen2_5_VLForConditionalGeneration
from datasets import load_dataset

huggingface_hub.login(os.getenv('HF_TOKEN'))
peft_model_id = "debisoft/Qwen2.5-VL-3B-Instruct-thinking-function_calling-V0"

bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
        )

device = "auto"
config = PeftConfig.from_pretrained(peft_model_id)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(config.base_model_name_or_path,
        #AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
                                             quantization_config=bnb_config,
                                             device_map="auto",
                                             )
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
model.resize_token_embeddings(len(tokenizer))
model = PeftModel.from_pretrained(model, peft_model_id,
    #offload_folder = "offload/"
    )

model.to(torch.bfloat16)
model.eval()

#tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B")
#model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B")


@spaces.GPU
def sentience_check():

    model.to(cuda_device)

    inputs = tokenizer("Are you sentient?", return_tensors="pt").to(cuda_device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs, max_new_tokens=128, pad_token_id = tokenizer.eos_token_id
        )

    model.to(cpu_device)

    return tokenizer.decode(outputs[0], skip_special_tokens=True)

demo = gr.Interface(fn=sentience_check, inputs=None, outputs=gr.Text())
demo.launch()