Spaces:
Running
Running
import os | |
os.environ["GRADIO_TEMP_DIR"] = "./tmp" | |
import sys | |
import torch | |
import torchvision | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from huggingface_hub import snapshot_download | |
from visualization import visualize_bbox | |
# Create necessary directories | |
os.makedirs("tmp", exist_ok=True) | |
os.makedirs("models", exist_ok=True) | |
# Define class mapping | |
id_to_names = { | |
0: 'title', | |
1: 'plain text', | |
2: 'abandon', | |
3: 'figure', | |
4: 'figure_caption', | |
5: 'table', | |
6: 'table_caption', | |
7: 'table_footnote', | |
8: 'isolate_formula', | |
9: 'formula_caption' | |
} | |
# Visual elements for extraction (can be customized) | |
VISUAL_ELEMENTS = ['figure', 'table', 'figure_caption', 'table_caption', 'isolate_formula'] | |
def load_model(): | |
"""Load the DocLayout-YOLO model from Hugging Face""" | |
try: | |
# Download model weights if they don't exist | |
model_dir = snapshot_download( | |
'juliozhao/DocLayout-YOLO-DocStructBench', | |
local_dir='./models/DocLayout-YOLO-DocStructBench' | |
) | |
# Select device | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"Using device: {device}") | |
# Import and load the model | |
from doclayout_yolo import YOLOv10 | |
model = YOLOv10(os.path.join( | |
os.path.dirname(__file__), | |
"models", | |
"DocLayout-YOLO-DocStructBench", | |
"doclayout_yolo_docstructbench_imgsz1024.pt" | |
)) | |
return model, device | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
return None, 'cpu' | |
def recognize_image(input_img, conf_threshold, iou_threshold): | |
"""Process input image and detect document elements""" | |
if input_img is None: | |
return None, None | |
try: | |
# Load model (global model if already loaded) | |
global model, device | |
# Run prediction | |
det_res = model.predict( | |
input_img, | |
imgsz=1024, | |
conf=conf_threshold, | |
device=device, | |
)[0] | |
# Extract detection results | |
boxes = det_res.__dict__['boxes'].xyxy | |
classes = det_res.__dict__['boxes'].cls | |
scores = det_res.__dict__['boxes'].conf | |
# Apply non-maximum suppression | |
indices = torchvision.ops.nms( | |
boxes=torch.Tensor(boxes), | |
scores=torch.Tensor(scores), | |
iou_threshold=iou_threshold | |
) | |
boxes, scores, classes = boxes[indices], scores[indices], classes[indices] | |
# Handle single detection case | |
if len(boxes.shape) == 1: | |
boxes = np.expand_dims(boxes, 0) | |
scores = np.expand_dims(scores, 0) | |
classes = np.expand_dims(classes, 0) | |
# Visualize results | |
vis_result = visualize_bbox(input_img, boxes, classes, scores, id_to_names) | |
# Create DataFrame for extraction | |
elements_data = [] | |
for i, (box, cls_id, score) in enumerate(zip(boxes, classes, scores)): | |
class_name = id_to_names[int(cls_id)] | |
# Only extract visual elements if specified | |
if not VISUAL_ELEMENTS or class_name in VISUAL_ELEMENTS: | |
x1, y1, x2, y2 = map(int, box) | |
width = x2 - x1 | |
height = y2 - y1 | |
elements_data.append({ | |
"class": class_name, | |
"confidence": float(score), | |
"x1": x1, | |
"y1": y1, | |
"x2": x2, | |
"y2": y2, | |
"width": width, | |
"height": height | |
}) | |
# Convert to DataFrame for display | |
import pandas as pd | |
if elements_data: | |
df = pd.DataFrame(elements_data) | |
df = df[["class", "confidence", "x1", "y1", "x2", "y2", "width", "height"]] | |
else: | |
df = pd.DataFrame(columns=["class", "confidence", "x1", "y1", "x2", "y2", "width", "height"]) | |
return vis_result, df | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
import traceback | |
traceback.print_exc() | |
return None, None | |
def gradio_reset(): | |
"""Reset the UI""" | |
return gr.update(value=None), gr.update(value=None), gr.update(value=None) | |
# Create basic HTML header | |
header_html = """ | |
<div style="text-align: center; max-width: 900px; margin: 0 auto;"> | |
<div> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Document Layout Analysis | |
</h1> | |
<p style="margin-top: 7px; font-size: 94%;"> | |
Detect and extract structured elements from document images using DocLayout-YOLO | |
</p> | |
</div> | |
</div> | |
""" | |
# Main execution | |
if __name__ == "__main__": | |
# Load model | |
model, device = load_model() | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.HTML(header_html) | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Upload Document Image", interactive=True) | |
with gr.Row(): | |
clear_btn = gr.Button(value="Clear") | |
predict_btn = gr.Button(value="Detect Elements", interactive=True, variant="primary") | |
with gr.Row(): | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.25, | |
) | |
iou_threshold = gr.Slider( | |
label="NMS IOU Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.45, | |
) | |
with gr.Column(): | |
output_img = gr.Image(label="Detection Result", interactive=False) | |
output_table = gr.DataFrame(label="Detected Visual Elements") | |
with gr.Row(): | |
gr.Markdown(""" | |
## Detected Elements | |
This application detects and extracts the following elements from document images: | |
- **Title**: Document and section titles | |
- **Plain Text**: Regular paragraph text | |
- **Figure**: Images, charts, diagrams, etc. | |
- **Figure Caption**: Text describing figures | |
- **Table**: Tabular data structures | |
- **Table Caption**: Text describing tables | |
- **Table Footnote**: Notes below tables | |
- **Formula**: Mathematical equations | |
- **Formula Caption**: Text describing formulas | |
For each element, the system returns coordinates and confidence scores. | |
""") | |
# Connect events | |
clear_btn.click(gradio_reset, inputs=None, outputs=[input_img, output_img, output_table]) | |
predict_btn.click( | |
recognize_image, | |
inputs=[input_img, conf_threshold, iou_threshold], | |
outputs=[output_img, output_table] | |
) | |
# Launch the interface | |
demo.launch(share=True, server_name="0.0.0.0", server_port=7860) |