Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ import io
|
|
| 10 |
import os
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
import pandas as pd
|
| 13 |
-
from pathlib import Path
|
| 14 |
import json
|
| 15 |
|
| 16 |
# Create directories if they don't exist
|
|
@@ -37,8 +37,19 @@ CLASSES = ["Caption", "Footnote", "Formula", "List-item", "Page-footer", "Page-h
|
|
| 37 |
# Define visual elements we want to extract
|
| 38 |
VISUAL_ELEMENTS = ["Picture", "Caption", "Table", "Formula"]
|
| 39 |
|
| 40 |
-
# Define colors for visualization
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Set up the annotator
|
| 44 |
box_annotator = sv.BoxAnnotator(color=COLORS)
|
|
@@ -60,7 +71,21 @@ def predict_layout(image):
|
|
| 60 |
results = model(img)[0]
|
| 61 |
|
| 62 |
# Format detections
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Get class names
|
| 66 |
class_ids = detections.class_id
|
|
@@ -80,7 +105,6 @@ def predict_layout(image):
|
|
| 80 |
class_name = CLASSES[class_id]
|
| 81 |
|
| 82 |
# Include all visual elements (Pictures, Captions, Tables, Formulas)
|
| 83 |
-
# You can add or remove classes based on what you consider "visual elements"
|
| 84 |
if class_name in VISUAL_ELEMENTS:
|
| 85 |
x1, y1, x2, y2 = map(int, xyxy)
|
| 86 |
width = x2 - x1
|
|
@@ -178,4 +202,5 @@ with gr.Blocks() as demo:
|
|
| 178 |
inputs=input_image
|
| 179 |
)
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
| 10 |
import os
|
| 11 |
import matplotlib.pyplot as plt
|
| 12 |
import pandas as pd
|
| 13 |
+
from pathlib import Path
|
| 14 |
import json
|
| 15 |
|
| 16 |
# Create directories if they don't exist
|
|
|
|
| 37 |
# Define visual elements we want to extract
|
| 38 |
VISUAL_ELEMENTS = ["Picture", "Caption", "Table", "Formula"]
|
| 39 |
|
| 40 |
+
# Define colors for visualization - Fix for ColorPalette issue
|
| 41 |
+
# Use the sv.ColorPalette directly or create a custom color palette based on supervision version
|
| 42 |
+
try:
|
| 43 |
+
# Try newer versions approach
|
| 44 |
+
COLORS = sv.ColorPalette.default()
|
| 45 |
+
except (AttributeError, TypeError):
|
| 46 |
+
try:
|
| 47 |
+
# Try alternate approach for some versions
|
| 48 |
+
COLORS = sv.ColorPalette.from_hex(["#FF0000", "#00FF00", "#0000FF", "#FFFF00", "#FF00FF", "#00FFFF",
|
| 49 |
+
"#FFA500", "#800080", "#008000", "#000080", "#808080"])
|
| 50 |
+
except (AttributeError, TypeError):
|
| 51 |
+
# Fallback for older versions or different API
|
| 52 |
+
COLORS = sv.ColorPalette(11) # Create a color palette with 11 colors (one for each class)
|
| 53 |
|
| 54 |
# Set up the annotator
|
| 55 |
box_annotator = sv.BoxAnnotator(color=COLORS)
|
|
|
|
| 71 |
results = model(img)[0]
|
| 72 |
|
| 73 |
# Format detections
|
| 74 |
+
try:
|
| 75 |
+
# Try with newer supervision versions
|
| 76 |
+
detections = sv.Detections.from_ultralytics(results)
|
| 77 |
+
except (TypeError, AttributeError):
|
| 78 |
+
# Fallback for older versions
|
| 79 |
+
boxes = results.boxes.xyxy.cpu().numpy()
|
| 80 |
+
confidence = results.boxes.conf.cpu().numpy()
|
| 81 |
+
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
| 82 |
+
|
| 83 |
+
# Create Detections object manually
|
| 84 |
+
detections = sv.Detections(
|
| 85 |
+
xyxy=boxes,
|
| 86 |
+
confidence=confidence,
|
| 87 |
+
class_id=class_ids
|
| 88 |
+
)
|
| 89 |
|
| 90 |
# Get class names
|
| 91 |
class_ids = detections.class_id
|
|
|
|
| 105 |
class_name = CLASSES[class_id]
|
| 106 |
|
| 107 |
# Include all visual elements (Pictures, Captions, Tables, Formulas)
|
|
|
|
| 108 |
if class_name in VISUAL_ELEMENTS:
|
| 109 |
x1, y1, x2, y2 = map(int, xyxy)
|
| 110 |
width = x2 - x1
|
|
|
|
| 202 |
inputs=input_image
|
| 203 |
)
|
| 204 |
|
| 205 |
+
if __name__ == "__main__":
|
| 206 |
+
demo.launch()
|